Entropy Coding of Neural Network Latent Space Coefficients for Point Clouds

Dominik Mehlem, Mirco Dilly

Institut für Nachrichtentechnik, RWTH Aachen University

Point Cloud Compression

Point Clouds

- 3D collection of points representing objects
- Geometry: points in space $(x, y, z) \in \mathbb{R}^3$
- Attributes: color information, normal vectors, ...

Compression Necessary

• Raw point cloud with approx. $0.7 \cdot 10^6$ points per frame and 30 fps

Autoencoder-based Geometry Compression [1]

Architechture

- Static geometry compression
- Size of block tensor (input) $x: 64 \times 64 \times 64$
- Size of LSC tensor (output) $y: 8 \times 8 \times 8 \times 32$

side information

- 10 bit geometry precision, 8 bit attribute precision
- Every point requires $3 \cdot (10 + 8)$ bit = 54 bit
- Due to data types up to 24 Byte per point:

 $R = 0.7 \cdot 10^6 \frac{\text{points}}{\text{frame}} \cdot 30 \frac{\text{frames}}{\text{s}} \cdot 24 \frac{\text{Byte}}{\text{point}} \approx 500 \frac{\text{MByte}}{\text{s}}$

Entropy Coding

- Coding of Geometry LSCs
- Lossless coding
- Input: Quantized latent space coefficients

Different Methods tested

- Huffman Coding (HC)
- Adaptive Huffman Coding (AHC)
- Arithmetic Coding (AC)
- Context-based Adaptive Binary Arithmetic Coding (CABAC)
- Dictionary-based Coding

Training

• Loss function: Rate and focal loss

 $\mathcal{L} = R + \lambda \sum_{\boldsymbol{z} \in X} \operatorname{FL}(\boldsymbol{z})$

 $\begin{array}{l} \textbf{Compression Ratio} \\ C = 1 - \frac{r_{\mathrm{enc}}}{r_{\mathrm{ref}}} \end{array}$

CABAC – Block Diagram and Binarization [3]

- –LZMA2 (7zip)
- Deflate (Gzip)
- \Rightarrow Dictionary-based methods and CABAC show most promising results

CABAC – Context Modeling

35 Contexts

- Sign bit and remainder >10 bypass coded
- Significance bit, Comparison bits with third-order model
- Remainder <10 with zeroth-order model (only marginal probability)

Bins	Binarization	CABAC Engine	Model Order	Context ID	Template
$b_{\neq 0}$	Coding Tree	Adaptive	3rd	0-7	$oldsymbol{T}_3$
b_{\pm}	Coding Tree	Bypass	—	—	—
$b_{>1}$	Coding Tree	Adaptive	3rd	8-15	\boldsymbol{T}_3
$b_{>2}$	Coding Tree	Adaptive	3rd	16-23	$oldsymbol{T}_3$
$b_{>10}$	Coding Tree	Adaptive	3rd	24-31	\boldsymbol{T}_3
$b_{r_{<10},1}$	Fixed-length	Adaptive	Oth	32	_
$b_{r_{<10},2}$	Fixed-length	Adaptive	Oth	33	—
$b_{r_{\leq 10},3}$	Fixed-length	Adaptive	Oth	34	—
$\overline{b_{r_{>10},i}}$	Exp-Golomb	Bypass	_	_	_

Results

- AHC and HC with density estimation show similar results
- CABAC: Conditional dependencies within LSCs can be exploited
- Dictionary-based coding achieves highest compression

References

Maurice Quach, Giuseppe Valenzise, and Frederic Dufaux. "Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression". In: 2019 IEEE International Conference on Image Processing (ICIP) (Sept. 2019)
Eugene d'Eon, Bob Harrison, Taos Myers, and Philip A. Chou. 8i Voxelized Full Bodies - A Voxelized Point Cloud Dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document WG11M40059/WG1M74006. Jan. 2017.
D. Marpe, H. Schwarz, and T. Wiegand. "Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard". In: IEEE Transactions on Circuits and Systems for Video Technology 13.7 (2003), pages 620-636.3

mehlem@ient.rwth-aachen.de

www.ient.rwth-aachen.de

SVCP 2022

Institut für Nachrichtentechnik, Melatener Str. 23, 52074 Aachen