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2. RDONet [3]
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RDONet
• Hierarchical structure: Compression in three different granulari3es possible
• Each Latent Space Unit (LS‐Unit) transmits one level
• Levels can be controlled externally block‐wise
• Redundancy reduc3on between levels with condi3onal hyperprior

Training:
• No rate‐distor3on‐op3miza3on possible during training
• Choose levels randomly
• Misalignment between training and inference

Hybrid coders [4]
• Adap3ve block par33oning
• Granularity is chosen adap3vely
• Sta3onary areas are transmi4ed in 
   large chunks
• Rate distor3on op3mized encoding

Proposal
• Traning procedure which approximates 
   RDO during training
• Low‐complexity encoding mode by 
   zero‐pass RDO
• On average, 23% bit savings compared to standard 

autoencoder

End‐To‐End Trained Image Coders [1,2]
• Compression into latent space with encoder network    : 
• Decompression to image with decoder network    : 
• Typically, one fixed func3on for compression and decompression
• RDONet [3]: Network that allows dynamic rate‐distor3on‐opmiza3on
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5. Conclusion

RDONet became feasible compression network
• Large improvement by specializing 
   layers on content and mask
• Increased rate savings from 
   7.7% to 27.3%
• Fast rate‐distor3on‐op3miza3on possible
• Half the number of coding passes 
   obtains almost same results
• Zero‐pass RDO available which 
   saves 23.6% rate
• Successfully transferred great strength of 
   block‐based coding to deep‐learning‐based
   methods
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3. Proposed Method

Training content adap#ve masking difficult
• Masking operator non‐differen3able
• RDO at training 3me computa3onally infeasible
 Inference Complexity
• RDO Search requires mul3ple coding runs
• 2‐pass RDO: 12 coding runs per 64x64 block
 
Variance Based Mask Es#ma#on
• Based on variance of pixels in block
• Split block if variance exceeds threshold
• Generate three levels with different thresholds

Training procedure
• Training with random masks for 2000 epochs
        • All levels can compress general image content
• Training with variance‐based masks for 600 epochs
        • Levels can specialize

Fast encoding
• Ini3alize RDO with variance‐based mask
• Faster convergence
• "Zero‐pass" RDO: Compress with es3mated mask

Example image "wojciech‐szaturski‐3611" and es3mated mask. 
Red: finest latent space resolu3on; Green: coarsest resolu3on. 
Structures with fine details are compressed with finest latent 
space resolu3on.
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4. Results

Network Basic RDONet [3] RDONet-Var (Ours)
RDO-Init Static Static Variance Adaptive
RDO-Passes 1 2 1 2 0 1 2

Best Case -18.9% -22.5% -43.7% -45.3% -36.6% -44.4% -45.2%
Worst Case +7.5% +3.5% -11.9% -12.5% -6.67% -11.9% -12.5%
Average -4.1% -7.7% -23.3% -25.0% -23.6% -26.8% - 27.3%

RDO-Complexity 6 ·N64 12 ·N64 6 ·N64 12 ·N64 0 6 ·N64 12 ·N64

Bjøntegaard Delta Rate savings compared to classical compressive 
autoencoder. RDO Complexity is given as network
runs per image.        is the number of 64x64 blocks in that image.
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Test Condi3ons
• Train networks on CLIC21 training set, DIV2K and TECNICK
• Evaluate network on CLIC21 test set
• Compare against RDONet trained with random masks [3]
   and conven3onal autoencoder with hyperprior and
   context model [2]

Extended training method
• Proposed training method superior
• Performance about 20% be4er than previous method

Fast RDO
• RDO with ini3aliza3on outperforms RDO with 
   sta3c ini3aliza3on
• 1‐pass RDO sufficient
• Very fast mode (zero‐pass) saves 23.6% rate
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RDONet [3] 

25.86 dB/0.16 bpp

Proposed RDONet

25.95 dB/0.14 bpp


