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End-To-End Trained Image Coders [1,2]

e Compression into latent space with encoder network e: f =e(x)
e Decompression to image with decoder network d: z = d(f)

e Typically, one fixed function for compression and decompression
e RDONet [3]: Network that allows dynamic rate-distortion-opmization

Hybrid coders [4]

e Adaptive block partitioning

e Granularity is chosen adaptively

e Stationary areas are transmitted in
large chunks

e Rate distortion optimized encoding
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3. Proposed Method

Training content adaptive masking difficult
e Masking operator non-differentiable
e RDO at training time computationally infeasible

Inference Complexity
e RDO Search requires multiple coding runs
e 2-pass RDO: 12 coding runs per 64x64 block

Variance Based Mask Estimation

e Based on variance of pixels in block

e Split block if variance exceeds threshold

e Generate three levels with different thresholds

Training procedure
e Training with random masks for 2000 epochs
e All levels can compress general image content
e Training with variance-based masks for 600 epochs
e Levels can specialize

Fast encoding

e |nitialize RDO with variance-based mask

e Faster convergence

e "Zero-pass" RDO: Compress with estimated mask
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Adaptive Block Partitioning

Example ima§e "wojciech-szaturski-3611" and estimated mask.
tent space resolution; Green: coarsest resolution.
Structures with fine details are compressed with finest latent
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e Hierarchical structure: Compression in three different granularities possible
e Each Latent Space Unit (LS-Unit) transmits one level

e Levels can be controlled externally block-wise
e Redundancy reduction between levels with conditional hyperprior

Training:

e No rate-distortion-optimization possible during training
e Choose levels randomly
e Misalignhment between training and inference

5. Conclusion

RDONet became feasible compression network

e Large improvement by specializing
ayers on content and mask
ncreased rate savings from

7.7% 10 27.3%

e Fast rate-distortion-optimization possible
e Half the number of coding passes
obtains almost same results
e Zero-pass RDO available which
saves 23.6% rate
e Successfully transferred great strength of
block-based coding to deep-learning-based

methods

RDONet [3]

25.86 dB/0.16 bpp
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Proposed RDONet
25.95 dB/0.14 bpp
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static initialization
e 1-pass RDO sufficient

e RDO with initialization outperforms RDO with

e Very fast mode (zero-pass) saves 23.6% rate

runs per image. Ng, is the number of 64x64 blocks in that image.



