RATE-DISTORTIONOPTIMIZATION FOR DEEP IMAGE COMPRESSION

SVCP 2022 Ilmenau 04.07.2022

© Fraunhofer HHI

Sophie Pientka

CONTENTS

- Motivation of research
- Description of the network architecture
- Rate-distortion optimized quantization
 - Distortion estimation
 - RDO algorithm
- Experimental results
- Conclusion

MOTIVATION OF RESEARCH

- Variational auto -encoders have shown promising progress in still image compression
 - Typically use convolutional neural networks (CNN) to find efficient feature representation
 - Can be characterized as non -linear transform coding
 - Trained with stochastic gradient descent on large data sets
 - Ballé et al. [14] employed hyper latents as side information to more efficiently compress extracted image features

- In RGB settings, VAEs can keep up with HEVC in terms of compression efficiency
- Conventional codecs employ orthogonal linear transforms and signal-dependant encoder optimizations
 - Can we improve the coding gain of a deep-learned image compression network by rate-distortion optimized quantization?
 - Exhaustively checking a 768x512 luma-only image would take ~10 million decoder network executions
 - Estimate impact of quantization on bitrate and sample distortion

DESCRIPTIONOF THE NETWORKARCHITECTURE

Image compression process

Encoder E is trained to find a representation of the input x as features, which are quantized with step size $\Delta > 0$:

$$z = E(x); \quad \hat{z}(\Delta) = \Delta \left[\frac{z}{\Delta} + \frac{1}{2}\right]$$

Decoder *D* reconstructs the image from the quantized features

$$x_{rec} = D(\hat{z}).$$

- We assume $z \sim \mathcal{N}(\mu, \sigma^2)$
- Hyper encoder E' extracts side information y from the features, which are also quantized and transmitted
- Hyper decoder D' reconstructs the parameters (μ, σ) from \hat{y}

Multi -scale convolutional layers

Separate channels into high (192 channels), middle (48) and low resolution (16)

- $f_{H \to H}, f_{M \to M}, f_{L \to L}$ are convolutional layers (5 × 5 kernels, stride 2) with non-linear activation
- $f_{H \to M}, f_{M \to L}$ are convolutional layers (5 × 5 kernels, stride 2)
 - $f_{M \to H}, f_{L \to M}$ are transposed convolutional layers (5 × 5 kernels, stride 2)

RD-OPTIMIZEDQUANTIZATION

- Fixed side information \hat{y} and probability parameters (μ, σ^2)
- Consider the set of quantization indices

$$\omega \in \mathbb{Z}^{h \times w \times c_0} \oplus \mathbb{Z}^{\frac{h}{2} \times \frac{w}{2} \times c_1} \oplus \mathbb{Z}^{\frac{h}{4} \times \frac{w}{4} \times c_2}.$$

Minimize the RD cost via

 $\min_{\omega}[\mathsf{MSE}(x, D(\omega)) + \lambda R(\omega)].$

- The encoder *E* typically does not find a global solution.
- Goal: understand the impact of selecting different quantization indices.

Distortion estimation I

Given the error due to quantization $h = \hat{z} - z$, we define an auxiliary function as $\epsilon(h) := MSE(D(z), D(z + h))$

while assuming that the reconstruction quality of unquantized features is as least as good as the quantized features

 $0 \leq MSE(x, D(z)) \leq MSE(x, D(\hat{z}))$

- A minimum is at $\epsilon(0) = 0 \implies \nabla \epsilon(0) = 0$
- We can approximate ϵ by a polynomial of degree 2 or higher

Distortion estimation II

- We estimate ϵ by using randomly chosen images and evaluating $\epsilon(h)$ at different quantization step sizes per channel
- Then, we fitted the following biquadratic polynomial to the data by a least-squares approximation

$$\epsilon(h) \approx \sum_{j=1}^{256} \left(\gamma_1^{(j)} \| h^{(j)} \|^2 + \gamma_2^{(j)} \| h^{(j)} \|^4 \right).$$
(1)

j denotes the channel index and $h^{(j)}$ is the quantization error in the j-th feature channel.

Further, $\gamma_i = (\gamma_i^{(1)}, ..., \gamma_i^{(256)}), i = 1,2$ are the coefficients to be determined from the data.

Distortion estimation III

With $\hat{z} = z + h$, the triangle inequality yields $MSE(x, D(\hat{z})) \leq MSE(x, D(z)) + \epsilon(h).$ (2)

• the upper bound is used for estimating $MSE(x, D(\hat{z}))$

Fast RDO algorithm I

- Compute z = E(x) and proceed for each multi-index position l in the feature representation of $\omega^* := \hat{z}$ as follows:
 - Compute the bitrate of the entry ω_l^* and the auxiliary value $\epsilon^* = \epsilon(h^*)$
 - For candidate test the upper and lower neighboring quant.-level and the mean value from the entropy model, denoted as ω^k :
 - Compute the updated bitrate and auxiliary value $\epsilon^k = \epsilon(h^k)$.
 - Pre-estimate the distortion by using (1) and (2) with the values ϵ^k and ϵ^* .
 - When the pre-estimated RD cost is less than the current minimum, execute the decoder network.
 - Set $\omega^* := \omega^k$, when the true RD cost is a minimum.

Fast RDO algorithm II

- The RD trade-off is measured as Lagrangian cost $d + \lambda R$, where the MSE is used as distortion measure
 - For every λ , a different quantization parameter was used

EXPERIMENTAL RESULTS

- Averaged RD curves over a luma -only version of the Kodak set.
- The average PSNRis computed by from the average MSE over the Kodak set
- As benchmark , a VAE like in [14] with 205 channels has been trained on luma only data from Imagenet.

CONCLUSIONS

- The quantization error of the features can be used to estimate the sample distortion via a suitably -determined polynomial.
- By using (1) to search suitable candidates, a fast RDO algorithm with significantly less decoder executions than fully testing each candidate can be designed.
 - The application of the fast RDO improves the coding gain while keeping the same decoder.

REFERENCES

Rate -Distortion Optimization and Quantization

[7] G. J. Sullivan and T. Wiegand, "Rate -distortion optimization for video compression," IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74–90, 1998.

[8] K. Ramchandran, A. Ortega, and M. Vetterli, "Bit allocation for dependent quantization with applications to multiresolution and MPEG video coders," IEEE Transactions on Image Processing, vol. 3, no. 5, pp. 533–545, 1994.

[10] M. Karczewicz, Y. Ye, and I. Chong, "Rate distortion optimized quantization," ITU -T SG16/Q6 (VCEG), January 2008.

[22] J. Stankowski, C. Korzeniewski , et al., "Rate -distortion optimized quantization in HEVC: Performance limitations," 2015 Picture Coding Symposium (PCS), pp. 85-89, 2015.

Deep Image Compression

[11] J. Ballé, P. Chou, et al., "Nonlinear Transform Coding," IEEE Journal of Selected Topics in Signal Processing, vol. PP, pp. 1–1, 10 2020.

[13] J. Ballé, V. Laparra, and E. P. Simoncelli, "End-to-end optimized image compression," in International Conference on Learning Representations (ICLR), Toulon, France, April 2017.

[14] J. Ballé, D. Minnen, et al., "Variational image compression with a scale hyperprior," in International Conference on Learning Representations, 2018.

[15] M. Akbari, J. Liang, et al., "Generalized octave convolutions for learned multifrequency image compression," 2020, Available at https://arxiv.org/abs/2002.10032.