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MOTIVATION OF RESEARCH

B Variational auto-encoders have shown promising progress in still image compression

Typically use convolutional neural networks (CNN) to find efficient feature
representation

Can be characterized as non -linear transform coding
Trained with stochastic gradient descent on large data sets

Ballé et al. [14] employed hyper latents as side information to more efficiently
compress extracted image features
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In RGB settings, VAEs can keep up with HEVC in terms of compression efficiency

Conventional codecs employ orthogonal linear transforms and signal-dependant
encoder optimizations

B (Can we improve the coding gain of a deep-learned image compression network by
rate-distortion optimized quantization?

Exhaustively checking a 768x512 luma-only image would take ~10 million decoder
network executions

Estimate impact of quantization on bitrate and sample distortion
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DESCRIPTIONOF THENETWORKARCHITECTURE
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Image compression process

B Encoder E is trained to find a representation of the input x as features, which are
quantized with step size A>O0:

z 1
= E(x); Z2(A) = A —+—‘
2= E(); 20) = Az +3
B Decoder D reconstructs the image from the quantized features
Xrec = D(2).

We assume z~ N (u, 02)

Hyper encoder E’ extracts side information y from the features, which are also
quantized and transmitted

M Hyper decoder D' reconstructs the parameters (u,0) from y
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Multi -scale convolutional layers

B Separate channels into high (192 channels), middle (48) and low resolution (16)

layer inputs 7 downsampling cons. layer layer outputs f(z) " fu-u fu-ms fLoL are
upsampling transposed conv. layer convo 111 t iO na 1 la ye IS

(5 x5 kernels, stride 2)
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RD-OPTIMIZEDQUANTIZATION

Fixed side information $ and probability parameters (4, %)

Consider the set of quantization indices

EXKXC QXEXC
w E ZhXWXCO @ 72772 1 @ 74" 4 2.

B Minimize the RD cost via

m(gn[MSE(x, D(w)) + AR(w)].

B The encoder E typically does not find a global solution.

B Goal:understand the impact of selecting different quantization indices.
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Distortion estimation |

B Given the error due to quantization h =2 —z, we define an auxiliary function as
e(h): = MSE(D(2),D(z + h))

while assuming that the reconstruction quality of unquantized features is as least as
good asthe quantized features

0 < MSE(x,D(z)) < MSE(x,D(2))
A minimum is at €(0) =0 = Ve(0) =0

We can approximate € by a polynomial of degree 2 or higher



Distortion estimation ||

B We estimate € by using randomly chosen images and evaluating e(h) at different
quantization step sizes per channel

channel 12

B Then, we fitted the following

biquadratic polynomial to the data by a

least-squares approximation ‘_E:
- ~ 112 ; AL A
e ~ T3 (r WO+ RO7). @ ”
B jdenotesthe channelindex and h¥) is the 0 25 500 750 1000 1250 1500 1750

SSE features
quantization error in the j-th feature channel.

1 256
YD, @50

y s ¥ ),i = 1,2 are the coefficients to be determined from the

® Further, y; = (y;
data.
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Distortion estimation ll|

B With Z= z + h, the triangle inequality yields
MSE(x,D(2)) s MSE(x,D(2)) + e(h). 2)

B the upper bound isused for estimating MSE(x,D(z“))



Fast RDO algorithm |

B Compute z=E(x)and proceed for each multi-index position [ in the feature
representation of w™:= Z as follows:

Compute the bitrate of the entry w; and the auxiliary value €* = e(h")

For candidate test the upper and lower neighboring quant.-level and the mean

value from the entropy model, denoted as w*:

Compute the updated bitrate and auxiliary value €* = e(h*).
Pre-estimate the distortion by using (1) and (2) with the values €* and €*.

When the pre-estimated RD cost is less than the current minimum, execute
the decoder network.

Set w*:= w*, when the true RD cost is a minimum.



Fast RDO algorithm ||

B The RD trade-off is measured as Lagrangian cost d + AR, where the MSE is used as
distortion measure

For every A, a different quantization parameter was used



EXPERIMENTAL RESULTS
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Averaged rate-distortion curve for the Kodak set (Y)
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Averaged RD curves over a luma-only
version of the Kodak set.

The average PSNRis computed by from
the average MSE over the Kodak set

As benchmark , a VAE like in [ 14] with
205 channels has been trained on luma-
only data from Imagenet .
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CONCLUSIONS

B The quantization error of the features can be used to estimate the sample distortion
via a suitably -determined polynomial.

B By using (1) to search suitable candidates, a fast RDO algorithm with significantly less
decoder executions than fully testing each candidate can be designed.

B The application of the fast RDO improves the coding gain while keeping the same
decoder.

SVCP2022 Sophie Pientka 16



REFERENCES

Rate -Distortion Optimization and
Quantization

[71 G. J. Sullivan and T. Wiegand, “Rate -distortion optimization for
video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6,
pp. 74-90, 1998.

[8] K. Ramchandran, A. Ortega, and M. Vetterli , “Bit allocation for
dependent quantization with applications to multiresolution and
MPEG video coders,” IEEE Transactions on Image Processing, vol. 3,
no. 5, pp. 533545, 1994.

[10] M. Karczewicz, Y. Ye, and I. Chong, “Rate distortion optimized
quantization,” ITU -T SG16/Q6 (VCEG), January 2008.

[22] J. Stankowski, C. Korzeniewski , et al., “Rate -distortion optimized
quantization in HEVC: Performance limitations,” 2015 Picture Coding
Symposium (PCS), pp. 8589, 2015.

SVCP2022

Deep Image Compression

[11] J. Ballé, P. Chou, et al., “Nonlinear Transform Coding,” IEEE
Journal of Selected Topics in Signal Processing, vol. PP, pp. 1-1, 10
2020.

[13]J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized
image compression,” in International Conference on Learning
Representations (ICLR), Toulon, France, April 2017.

[14]]. Ballé, D. Minnen, et al., “Variational image compression with a
scale hyperprior,” in International Conference on Learning
Representations, 2018.

[15] M. Akbari, J. Liang, et al., “Generalized octave convolutions for
learned multifrequency image compression,” 2020, Available at
https://arxiv.org/abs/2002.10032.

Sophie Pientka



	Rate-distortion-optimization �for deep image compression���
	Contents
	Motivation of research
	Foliennummer 4
	Description of the NETWORK Architecture
	Image compression process
	Multi-scale convolutional layers
	RD-optimized quantization
	Distortion estimation I
	Distortion estimation II
	Distortion estimation III
	Fast RDO algorithm I
	Fast RDO algorithm II
	EXPERIMENTAL RESULTS
	CONCLUSIONS
	ReferenceS

