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MOTIVATION OF RESEARCH

 Variational auto -encoders have shown promising progress in still image compression

 Typically use convolutional neural networks (CNN) to find efficient feature 
representation

 Can be characterized as non -linear transform coding

 Trained with stochastic gradient descent on large data sets

 Ballé e t  a l. [14] employed  hyper la ten ts as side  informat ion  to  more  e fficien t ly 
compress ext racted  image  fea tures
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 In RGB settings, VAEs can keep up with HEVC in terms of compression efficiency

 Convent iona l codecs employ orthogonal linear t ransforms and  signa l-dependant
encoder op t imiza t ions

 Can we improve  the  coding  ga in  of a  deep-learned  image  compression  ne twork by 
ra te -d istort ion  opt imized  quant iza t ion?

 Exhaust ive ly checking  a  768x512 luma-only image  would  take  ~10 million  decoder 
ne twork execut ions

 Est imate  impact  of quant iza t ion  on  b it ra te  and  sample  d istort ion
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DESCRIPTION OF THENETWORK ARCHITECTURE
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 Based on  the  
ne twork 
a rchitecture  
from Ballé e t  
a l. [14], 2018

 Mult i-sca le  
convolu t ions 
with  d iffe ren t  
reso lu t ions

 256 channe ls,  
3 enc. layers,   
3 dec. layers
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Image compression process

 Encoder 𝐸𝐸 is t ra ined  to  find  a  representa t ion  of the  input  𝑥𝑥 as fea tures, which  a re  
quant ized  with  step  size  Δ>0:

𝑧𝑧 = 𝐸𝐸 𝑥𝑥 ; 𝑧̂𝑧 Δ = Δ
𝑧𝑧
Δ

+
1
2

 Decoder 𝐷𝐷 reconst ructs the  image  from the  quant ized  fea tures

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐷𝐷 𝑧̂𝑧 .

 We assume 𝑧𝑧~ 𝒩𝒩(𝜇𝜇,𝜎𝜎2)

 Hyper encoder 𝐸𝐸𝐸 ext ract s side  informat ion  𝑦𝑦 from the  fea tures, which  a re  a lso  
quant ized  and  t ransmit ted

 Hyper decoder 𝐷𝐷′ reconst ructs the  parameters (𝜇𝜇,𝜎𝜎) from �𝑦𝑦
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Multi -scale convolutional layers
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 Separa te  channels in to  h igh  (192 channels), middle  (48) and  low reso lu t ion  (16)

 𝑓𝑓𝐻𝐻→𝐻𝐻,𝑓𝑓𝑀𝑀→𝑀𝑀, 𝑓𝑓𝐿𝐿→𝐿𝐿 are  
convolu t iona l layers 
(5 × 5 kerne ls, st ride  2) 
with  non-linear 
act iva t ion

 𝑓𝑓𝐻𝐻→𝑀𝑀,𝑓𝑓𝑀𝑀→𝐿𝐿 are  
convolu t iona l layers 
(5 × 5 kerne ls, st ride  2)

 𝑓𝑓𝑀𝑀→𝐻𝐻 ,𝑓𝑓𝐿𝐿→𝑀𝑀 are  
t ransposed  
convolu t iona l layers 
(5 × 5 kerne ls, st ride  2)
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RD-OPTIMIZEDQUANTIZATION

 Fixed side information �𝑦𝑦 and  probability parameters (𝜇𝜇,𝜎𝜎2)

 Consider the  se t  o f quant iza t ion  ind ices 

𝜔𝜔 ∈ ℤℎ×𝑤𝑤×𝑐𝑐0 ⊕ ℤ
ℎ
2×𝑤𝑤2×𝑐𝑐1 ⊕ ℤ

ℎ
4×𝑤𝑤4×𝑐𝑐2 .

 Minimize  the  RD cost  via

min
𝜔𝜔

MSE 𝑥𝑥,𝐷𝐷(𝜔𝜔) + 𝜆𝜆𝑅𝑅 𝜔𝜔 .

 The encoder 𝐸𝐸 typ ica lly does not  find  a  g loba l so lu t ion .

 Goal: understand  the  impact  of se lect ing  d iffe ren t  quant iza t ion  ind ices.
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Distortion estimation I

 Given the error due to quantization ℎ = 𝑧̂𝑧 − 𝑧𝑧, we  define  an  auxilia ry funct ion  as

𝜖𝜖 ℎ : = MSE 𝐷𝐷 𝑧𝑧 ,𝐷𝐷 𝑧𝑧 + ℎ

while  assuming  tha t  the  reconst ruct ion  qua lity of unquant ized fea tures is as least  as 
good as the  quant ized  fea tures 

0 ≤ MSE 𝑥𝑥,𝐷𝐷 𝑧𝑧 ≤ MSE 𝑥𝑥,𝐷𝐷 𝑧̂𝑧

 A minimum is a t  𝜖𝜖 0 = 0 ⟹ 𝛻𝛻𝛻𝛻 0 = 0

 We can  approximate  𝜖𝜖 by a  po lynomia l o f degree  2 or h igher
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Distortion estimation II

 We estimate 𝜖𝜖 by using  randomly chosen  images and  eva lua t ing  𝜖𝜖 ℎ a t  d iffe ren t  
quant iza t ion  step  sizes per channel   

 Then, we  fit t ed  the  fo llowing  

b iquadra t ic po lynomia l to  the  da ta  by a  

least -squares approximat ion

𝜖𝜖 ℎ ≈ ∑𝑗𝑗=1256 𝛾𝛾1
𝑗𝑗 ℎ 𝑗𝑗 2

+ 𝛾𝛾2
𝑗𝑗 ℎ 𝑗𝑗 4

. (1)

 𝑗𝑗 denotes the  channel index and  ℎ(𝑗𝑗) is the  

quant iza t ion  e rror in  the  j-th fea ture  channel.

 Further, 𝛾𝛾𝑖𝑖 = (𝛾𝛾𝑖𝑖
(1), … , 𝛾𝛾𝑖𝑖

(256)), 𝑖𝑖 = 1,2 are  the  coefficien ts to  be  de te rmined  from the  
da ta .
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Distortion estimation III

 With 𝑧̂𝑧 = 𝑧𝑧 + ℎ, the  t riangle  inequality yie lds

MSE 𝑥𝑥,𝐷𝐷 𝑧̂𝑧 ≲ MSE 𝑥𝑥,𝐷𝐷 𝑧𝑧 + 𝜖𝜖 ℎ . (2)

 the  upper bound is used  for est imat ing  MSE 𝑥𝑥,𝐷𝐷 𝑧̂𝑧
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Fast RDO algorithm I
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 Compute  z = 𝐸𝐸(𝑥𝑥) and  proceed  for each  mult i-index posit ion  𝑙𝑙 in  the  fea ture  
representa t ion  of ω∗: = 𝑧̂𝑧 as fo llows:

 Compute  the  b it ra te  of the  en t ry ω𝑙𝑙
∗ and  the  auxilia ry va lue  𝜖𝜖∗ = 𝜖𝜖(ℎ∗)

 For candida te  test  the  upper and  lower ne ighboring  quant .-leve l and  the  mean  
va lue  from the  en t ropy model, denoted  as ω𝑘𝑘:

 Compute  the  updated  b it ra te  and  auxilia ry va lue  𝜖𝜖𝑘𝑘 = 𝜖𝜖(ℎ𝑘𝑘).

 Pre-est imate  the  d istort ion  by using  (1) and  (2) with  the  va lues 𝜖𝜖𝑘𝑘 and  𝜖𝜖∗ .

 When the  pre-est imated  RD cost  is less than  the  curren t  min imum, execute  
the  decoder ne twork.

 Set  ω∗: = ω𝑘𝑘, when  the  t rue  RD cost  is a  min imum.
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Fast RDO algorithm II
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 The RD t rade-off is measured as Lagrangian cost 𝑑𝑑 + 𝜆𝜆𝑅𝑅, where  the  MSE is used  as 
d istort ion  measure

 For every 𝜆𝜆, a  d iffe ren t  quant iza t ion  parameter was used
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EXPERIMENTAL RESULTS

 Averaged RD curves over a luma -only
version of the Kodak set.

 The average PSNR is computed by from
the average MSE over the Kodak set

 As benchmark , a VAE like in [ 14] with
205 channels has been trained on luma -
only data from Imagenet .
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CONCLUSIONS

 The quantization error of the features can be used to estimate the sample distortion 
via a suitably -determined polynomial.

 By using (1) to search suitable candidates, a fast RDO algorithm with significantly less 
decoder executions than fully testing each candidate can be designed.

 The application of the fast RDO improves the coding gain while keeping the same 
decoder.
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