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MOTIVATION OF RESEARCH

 Variational auto -encoders have shown promising progress in still image compression

 Typically use convolutional neural networks (CNN) to find efficient feature 
representation

 Can be characterized as non -linear transform coding

 Trained with stochastic gradient descent on large data sets

 Ballé e t  a l. [14] employed  hyper la ten ts as side  informat ion  to  more  e fficien t ly 
compress ext racted  image  fea tures
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 In RGB settings, VAEs can keep up with HEVC in terms of compression efficiency

 Convent iona l codecs employ orthogonal linear t ransforms and  signa l-dependant
encoder op t imiza t ions

 Can we improve  the  coding  ga in  of a  deep-learned  image  compression  ne twork by 
ra te -d istort ion  opt imized  quant iza t ion?

 Exhaust ive ly checking  a  768x512 luma-only image  would  take  ~10 million  decoder 
ne twork execut ions

 Est imate  impact  of quant iza t ion  on  b it ra te  and  sample  d istort ion

Sophie  Pien tkaSVCP2022



DESCRIPTION OF THENETWORK ARCHITECTURE
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 Based on  the  
ne twork 
a rchitecture  
from Ballé e t  
a l. [14], 2018

 Mult i-sca le  
convolu t ions 
with  d iffe ren t  
reso lu t ions

 256 channe ls,  
3 enc. layers,   
3 dec. layers
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Image compression process

 Encoder 𝐸𝐸 is t ra ined  to  find  a  representa t ion  of the  input  𝑥𝑥 as fea tures, which  a re  
quant ized  with  step  size  Δ>0:

𝑧𝑧 = 𝐸𝐸 𝑥𝑥 ; �̂�𝑧 Δ = Δ
𝑧𝑧
Δ

+
1
2

 Decoder 𝐷𝐷 reconst ructs the  image  from the  quant ized  fea tures

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐷𝐷 �̂�𝑧 .

 We assume 𝑧𝑧~ 𝒩𝒩(𝜇𝜇,𝜎𝜎2)

 Hyper encoder 𝐸𝐸𝐸 ext ract s side  informat ion  𝑦𝑦 from the  fea tures, which  a re  a lso  
quant ized  and  t ransmit ted

 Hyper decoder 𝐷𝐷𝐸 reconst ructs the  parameters (𝜇𝜇,𝜎𝜎) from �𝑦𝑦
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Multi -scale convolutional layers
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 Separa te  channels in to  h igh  (192 channels), middle  (48) and  low reso lu t ion  (16)

 𝑓𝑓𝐻𝐻→𝐻𝐻,𝑓𝑓𝑀𝑀→𝑀𝑀, 𝑓𝑓𝐿𝐿→𝐿𝐿 are  
convolu t iona l layers 
(5 × 5 kerne ls, st ride  2) 
with  non-linear 
act iva t ion

 𝑓𝑓𝐻𝐻→𝑀𝑀,𝑓𝑓𝑀𝑀→𝐿𝐿 are  
convolu t iona l layers 
(5 × 5 kerne ls, st ride  2)

 𝑓𝑓𝑀𝑀→𝐻𝐻 ,𝑓𝑓𝐿𝐿→𝑀𝑀 are  
t ransposed  
convolu t iona l layers 
(5 × 5 kerne ls, st ride  2)
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RD-OPTIMIZEDQUANTIZATION

 Fixed side information �𝑦𝑦 and  probability parameters (𝜇𝜇,𝜎𝜎2)

 Consider the  se t  o f quant iza t ion  ind ices 

𝜔𝜔 ∈ ℤℎ×𝑤𝑤×𝑟𝑟0 ⊕ ℤ
ℎ
2×𝑤𝑤2×𝑟𝑟1 ⊕ ℤ

ℎ
4×𝑤𝑤4×𝑟𝑟2 .

 Minimize  the  RD cost  via

min
𝜔𝜔

MSE 𝑥𝑥,𝐷𝐷(𝜔𝜔) + 𝜆𝜆𝑅𝑅 𝜔𝜔 .

 The encoder 𝐸𝐸 typ ica lly does not  find  a  g loba l so lu t ion .

 Goal: understand  the  impact  of se lect ing  d iffe ren t  quant iza t ion  ind ices.
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Distortion estimation I

 Given the error due to quantization ℎ = �̂�𝑧 − 𝑧𝑧, we  define  an  auxilia ry funct ion  as

𝜖𝜖 ℎ : = MSE 𝐷𝐷 𝑧𝑧 ,𝐷𝐷 𝑧𝑧 + ℎ

while  assuming  tha t  the  reconst ruct ion  qua lity of unquant ized fea tures is as least  as 
good as the  quant ized  fea tures 

0 ≤ MSE 𝑥𝑥,𝐷𝐷 𝑧𝑧 ≤ MSE 𝑥𝑥,𝐷𝐷 �̂�𝑧

 A minimum is a t  𝜖𝜖 0 = 0 ⟹ 𝛻𝛻𝜖𝜖 0 = 0

 We can  approximate  𝜖𝜖 by a  po lynomia l o f degree  2 or h igher
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Distortion estimation II

 We estimate 𝜖𝜖 by using  randomly chosen  images and  eva lua t ing  𝜖𝜖 ℎ a t  d iffe ren t  
quant iza t ion  step  sizes per channel   

 Then, we  fit t ed  the  fo llowing  

b iquadra t ic po lynomia l to  the  da ta  by a  

least -squares approximat ion

𝜖𝜖 ℎ ≈ ∑𝑗𝑗=1256 𝛾𝛾1
𝑗𝑗 ℎ 𝑗𝑗 2

+ 𝛾𝛾2
𝑗𝑗 ℎ 𝑗𝑗 4

. (1)

 𝑗𝑗 denotes the  channel index and  ℎ(𝑗𝑗) is the  

quant iza t ion  e rror in  the  j-th fea ture  channel.

 Further, 𝛾𝛾𝑖𝑖 = (𝛾𝛾𝑖𝑖
(1), … , 𝛾𝛾𝑖𝑖

(256)), 𝑖𝑖 = 1,2 are  the  coefficien ts to  be  de te rmined  from the  
da ta .
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Distortion estimation III

 With �̂�𝑧 = 𝑧𝑧 + ℎ, the  t riangle  inequality yie lds

MSE 𝑥𝑥,𝐷𝐷 �̂�𝑧 ≲ MSE 𝑥𝑥,𝐷𝐷 𝑧𝑧 + 𝜖𝜖 ℎ . (2)

 the  upper bound is used  for est imat ing  MSE 𝑥𝑥,𝐷𝐷 �̂�𝑧
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Fast RDO algorithm I
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 Compute  z = 𝐸𝐸(𝑥𝑥) and  proceed  for each  mult i-index posit ion  𝑙𝑙 in  the  fea ture  
representa t ion  of ω∗: = �̂�𝑧 as fo llows:

 Compute  the  b it ra te  of the  en t ry ω𝑙𝑙
∗ and  the  auxilia ry va lue  𝜖𝜖∗ = 𝜖𝜖(ℎ∗)

 For candida te  test  the  upper and  lower ne ighboring  quant .-leve l and  the  mean  
va lue  from the  en t ropy model, denoted  as ω𝑘𝑘:

 Compute  the  updated  b it ra te  and  auxilia ry va lue  𝜖𝜖𝑘𝑘 = 𝜖𝜖(ℎ𝑘𝑘).

 Pre-est imate  the  d istort ion  by using  (1) and  (2) with  the  va lues 𝜖𝜖𝑘𝑘 and  𝜖𝜖∗ .

 When the  pre-est imated  RD cost  is less than  the  curren t  min imum, execute  
the  decoder ne twork.

 Set  ω∗: = ω𝑘𝑘, when  the  t rue  RD cost  is a  min imum.
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Fast RDO algorithm II
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 The RD t rade-off is measured as Lagrangian cost 𝑑𝑑 + 𝜆𝜆𝑅𝑅, where  the  MSE is used  as 
d istort ion  measure

 For every 𝜆𝜆, a  d iffe ren t  quant iza t ion  parameter was used

SVCP2022



EXPERIMENTAL RESULTS

 Averaged RD curves over a luma -only
version of the Kodak set.

 The average PSNR is computed by from
the average MSE over the Kodak set

 As benchmark , a VAE like in [ 14] with
205 channels has been trained on luma -
only data from Imagenet .
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CONCLUSIONS

 The quantization error of the features can be used to estimate the sample distortion 
via a suitably -determined polynomial.

 By using (1) to search suitable candidates, a fast RDO algorithm with significantly less 
decoder executions than fully testing each candidate can be designed.

 The application of the fast RDO improves the coding gain while keeping the same 
decoder.
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