

Energy Efficient Video Decoding for VVC Using a Greedy Strategy Based Design Space Exploration

Matthias Kränzler matthias.kraenzler@fau.de Multimedia Communications and Signal Processing

Motivation

 Increase of IP traffic at Frankfurt internet exchange node by 140% in the last five years (5 Tbit/s → 12 Tbit/s) [1]

→ Compound annual growth rate of \approx 20%

- Rising demand for video streaming and higher quality video content
 - \rightarrow Requirement for better compression

[1] https://www.de-cix.net/en/locations/frankfurt/statistics [01.05.2022]

Kränzler: Energy Efficient Video Decoding for VVC

Motivation

 Increase of IP traffic at Frankfurt internet exchange node by 140% in the last five years (5 Tbit/s → 12 Tbit/s) [1]

ightarrow Compound annual growth rate of pprox 20%

• Rising demand for video streaming and higher quality video content

 \rightarrow Requirement for better compression

- Versatile Video Coding (VVC): 50% bit rate reduction with equal subjective quality in relation to HEVC
 - ightarrow Increased complexity of codec
- Goal: Reduction of decoding energy demand

		Random access Main10						
		VTM 11.0 Over HM 16.22						
	Y	U	V	EncT	DecT			
Class A1	-41,67%	-43,42%	-49,16%	675%	157%			
Class A2	-47,76%	-46,20%	-44,93%	752%	170%			
Class B	-41,72%	-53,65%	-51,59%	754%	155%			
Class C	-34,68%	-37,88%	-39,61%	1033%	163%			
Class E								
Overall	-41,04%	-45,91%	-46,58%	802%	161%			
Class D	-30,84%	-33,63%	-33,40%	1161%	164%			
Class F	-48,00%	-50,91%	-51,69%	572%	137%			
					[2]			

[1] https://www.de-cix.net/en/locations/frankfurt/statistics
 [0] F. Bossen *et al.*, "JVET AHG report: Test model software development (AHG3)," JVET-U0003, Jan. 2021

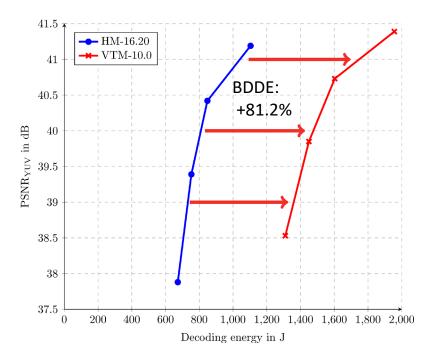
Kränzler: Energy Efficient Video Decoding for VVC

- Motivation
- Metrics & Setup
- Greedy Strategy Based Design Space Exploration
- Evaluation of DSE
- Conclusion

Kränzler: Energy Efficient Video Decoding for VVC Multimedia Communications and Signal Processing

Metrics & Setup

Energy measurement setup:


- Desktop PC: Intel i7-8700 CPU
- Integrated power meter of CPU (RAPL)
- Measurements are validated with confidence interval test

Visual quality metric:

• YUV-PSNR


Bjøntegaard-delta metrics:

- BD bit rate (BDR)
- BD decoding energy (BDDE)

Kränzler: Energy Efficient Video Decoding for VVC

Metrics & Setup

		Sequence	Resolution	Frames	Rate	Bit Depth
5			UV	/G1		
26	tup:	Beauty	3840×2160	600	120	10
_		Bosphorus	3840×2160	600	120	10
•	Encoding:	HoneyBee	3840×2160	600	120	10
		Jockey	3840×2160	600	120	10
	 According to common test conditions of 	ReadySetGo	3840×2160	600	120	10
		ShakeNDry	3840×2160	300	120	10
	JVET-N1010 [3]	YachtRide	3840×2160	600	120	10
		Lips	3840×2160	600	120	10
	– VVC: VTM		U١	/G2		
		CityAlley	3840×2160	600	50	10
	– HEVC: HM	FlowerFocus	3840×2160	600	50	10
		FlowerKids	3840×2160	600	50	10
•	Decoding:	FlowerPan	3840×2160	600	50	10
		RaceNight	3840×2160	600	50	10
	– VVC: VTM, VVdeC	RiverBank	3840×2160	600	50	10
	- ,	SunBath	3840×2160	300	50 50	10
	 HEVC: HM, openHEVC 	Twilight	3840×2160	600	50	10
				/G3		
•	Test sequence sets:	Beauty	1920×1080	600	120	8
		Bosphorus	1920×1080	600	120	8
	 JVET [3]: Class A1-F 	HoneyBee	1920×1080	600	120	8
		Jockey	1920×1080	600	120	8
	 UVG [4]: 4K & FHD sequences 	ReadySetGo	1920×1080	600	120	8
	- Ovo [4]. 4K & FID sequences	ShakeNDry	1920×1080	300	120	8
		YachtRide	$ 1920 \times 1080$	600	120	8

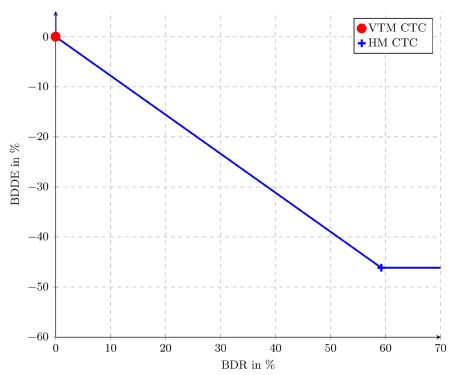
[3] F. Bossen et al., "JVET common test conditions and software reference configurations for SDR video," JVET-N1010, Mar. 2019

[4] A. Mercat et al., "UVG dataset: 50/120fps 4K sequences for video codec analysis and development," in Proc. ACM Multimedia Systems Conference, Istanbul, Turkey, Jun. 2020.

Kränzler: Energy Efficient Video Decoding for VVC

Multimedia Communications and Signal Processing

- Motivation
- Metrics & Setup
- Greedy Strategy Based Design Space Exploration
- Evaluation of DSE
- Conclusion



Kränzler: Energy Efficient Video Decoding for VVC Multimedia Communications and Signal Processing

Design Space Exploration (DSE) [5]:

• Trade-off between compression and energy efficiency

[5] M. Kränzler *et al.*, "Energy Efficient Video Decoding for VVC Using a Greedy Strategy Based Design Space Exploration," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 7, pp. 4696-4709, Jul. 2022.

Kränzler: Energy Efficient Video Decoding for VVC

Design Space Exploration (DSE) [5]:

- Trade-off between compression and energy efficiency
- Definition of a coding tool profile (CTP):

 $oldsymbol{u} = \left(egin{array}{c} u(1) \ dots \ u(
u) \ dots \ u(
u) \ dots \ u(
u) \ dots \ u(N) \end{array}
ight)$

	Tool	AI	LB	RA		Tool	AI	LB	RA
	CCLM	1	1	\checkmark		DQ	1	1	1
Intra	ISP	1	\checkmark	1	Transform.	JCCR	1	\checkmark	1
mtra	MIP	1	X	1	Quant.	LFNST	1	X	1
	MRLP	1	1	1	Quant.	MTS	1	1	1
	AFFINE	-	1	 Image: A start of the start of		SBT	-	1	1
	AMVR	-	1	1		ALF	1	1	1
	BCW	-	1	1	In-Loop	CCALF	1	1	1
	BDOF	-	-	1	Filter	DBF	1	1	1
	CIIP	-	\checkmark	1	T HIGH	LMCS	1	1	1
Inter	DMVR	-	-	1		SAO	1	✓	1
	GPM	-	1	1		BDPCM	X	X	X
	MMVD	-	1	1	Others	IBC	X	X	×
	PROF	-	\checkmark	\checkmark		CST	1	1	1
	SbTMVP	-	\checkmark	\checkmark		1	1		
	SMVD	-	-	1					

[5] M. Kränzler *et al.*, "Energy Efficient Video Decoding for VVC Using a Greedy Strategy Based Design Space Exploration," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 7, pp. 4696-4709, Jul. 2022.

Kränzler: Energy Efficient Video Decoding for VVC

Design Space Exploration (DSE) [5]:

- Trade-off between compression and energy efficiency
- Definition of a coding tool profile (CTP):

 $oldsymbol{u} = \left(egin{array}{c} u(1) \ dots \ u(
u) \ dots \ u(
u) \ dots \ u(
u) \ dots \ u(N) \end{array}
ight)$

Goal: Optimization of energy efficiency

 $\min_{\boldsymbol{u}} \ \text{BDDE} = \min_{\boldsymbol{u}} \ f\left(\boldsymbol{u}\right)$

[5] M. Kränzler *et al.*, "Energy Efficient Video Decoding for VVC Using a Greedy Strategy Based Design Space Exploration," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 7, pp. 4696-4709, Jul. 2022.

```
1 Initialize u_{1,0};
 2 i = 1:
 3 while u_{i,0} \neq u_{i+1,0} do
          \text{PSNR}_{i,0}, \text{Energy}_{i,0} \leftarrow \text{Analyze}(\boldsymbol{u}_{i,0});
 4
          for \nu \leftarrow 1, 2, ..., N do
 5
                u_{i,\nu} = u_{i,0};
 6
                if u_{i,0}(\nu) == 0 then
 7
                     \boldsymbol{u_{i,\nu}}\left(\nu\right)=1;
 8
                else
 9
                   10
                end
11
                \text{PSNR}_{i,\nu}, \text{Energy}_{i,\nu} \leftarrow \text{Analyze}(u_{i,\nu});
12
                Calculate BDDE (u_{1,0}, u_{i,\nu});
13
                if BDDE (u_{1,0}, u_{i,\nu}) < BDDE (u_{1,0}, u_{i,0}) then
\mathbf{14}
                     \boldsymbol{u_{i+1,0}}\left(\boldsymbol{\nu}\right) = \boldsymbol{u_{i,\nu}}\left(\boldsymbol{\nu}\right);
15
                end
16
           end
17
           if BDDE (u_{1,0}, u_{i,\nu}) \geq BDDE (u_{1,0}, u_{i-1,0}) \forall \nu then
\mathbf{18}
                Break;
19
           end
\mathbf{20}
          i = i + 1;
\mathbf{21}
22 end
```


Kränzler: Energy Efficient Video Decoding for VVC

Multimedia Communications and Signal Processing

04.07.2022 Page 10

0

Example:

$$u_{1,0} = \begin{pmatrix} u(A) = 1 \\ u(B) = 1 \\ u(C) = 1 \\ u(D) = 1 \end{pmatrix} \rightarrow BDDE(u_{1,0}, u_{1,0}) = 0$$

First iteration: ٠

$$\begin{array}{cccc} \boldsymbol{u_{1,1}} = (0\ 1\ 1\ 1)^{\mathsf{T}} & BDDE(\boldsymbol{u_{1,0}},\boldsymbol{u_{1,1}}) = \textbf{-1.2\%} \\ \boldsymbol{u_{1,2}} = (1\ 0\ 1\ 1)^{\mathsf{T}} & BDDE(\boldsymbol{u_{1,0}},\boldsymbol{u_{1,2}}) = \ 4.2\% \\ \boldsymbol{u_{1,3}} = (1\ 1\ 0\ 1)^{\mathsf{T}} & BDDE(\boldsymbol{u_{1,0}},\boldsymbol{u_{1,3}}) = \ 0.3\% \\ \boldsymbol{u_{1,4}} = (1\ 1\ 1\ 0)^{\mathsf{T}} & BDDE(\boldsymbol{u_{1,0}},\boldsymbol{u_{1,3}}) = \ \textbf{-2\%} \end{array} \Rightarrow \boldsymbol{u_{2,0}} = \begin{pmatrix} \boldsymbol{0} \\ 1 \\ 1 \\ \boldsymbol{0} \end{pmatrix}$$

Second iteration: $BDDE(u_{1,0}, u_{2,0}) = -2.6\%$ •

$$\begin{array}{cccc} \boldsymbol{u_{2,1}} = (1 \ 1 \ 1 \ 0)^{\mathsf{T}} & BDDE(\boldsymbol{u_{1,0}}, \boldsymbol{u_{2,1}}) = -2\% \\ \boldsymbol{u_{2,2}} = (0 \ 0 \ 1 \ 0)^{\mathsf{T}} & & BDDE(\boldsymbol{u_{1,0}}, \boldsymbol{u_{2,2}}) = -1.3\% \\ \boldsymbol{u_{2,3}} = (0 \ 1 \ 0 \ 0)^{\mathsf{T}} & \rightarrow & BDDE(\boldsymbol{u_{1,0}}, \boldsymbol{u_{2,3}}) = -2.9\% \\ \boldsymbol{u_{2,4}} = (0 \ 1 \ 1 \ 1)^{\mathsf{T}} & & BDDE(\boldsymbol{u_{1,0}}, \boldsymbol{u_{2,3}}) = -1.2\% \end{array} \Rightarrow \boldsymbol{u_{3,0}} = \begin{pmatrix} 0 \\ 1 \\ \mathbf{0} \\ 0 \end{pmatrix}$$

1 Initialize
$$u_{1,0}$$
;

 2 $i = 1$;

 3 while $u_{i,0} \neq u_{i+1,0}$ do

 4 PSNR_{i,0}, Energy_{i,0} \leftarrow Analyze $(u_{i,0})$;

 5 for $\nu \leftarrow 1, 2, ..., N$ do

 6
 $u_{i,\nu} = u_{i,0}$;

 7
 if $u_{i,0}(\nu) == 0$ then

 8
 $| u_{i,\nu}(\nu) = 1$;

 9
 else

 10
 $| u_{i,\nu}(\nu) = 0$;

 11
 end

 12
 PSNR_{i,\nu}, Energy_{i,\nu} \leftarrow Analyze $(u_{i,\nu})$;

 13
 Calculate BDDE $(u_{1,0}, u_{i,\nu})$;

 14
 if BDDE $(u_{1,0}, u_{i,\nu}) < BDDE (u_{1,0}, u_{i,0})$ then

 15
 $| u_{i+1,0}(\nu) = u_{i,\nu}(\nu)$;

 16
 end

 17
 end

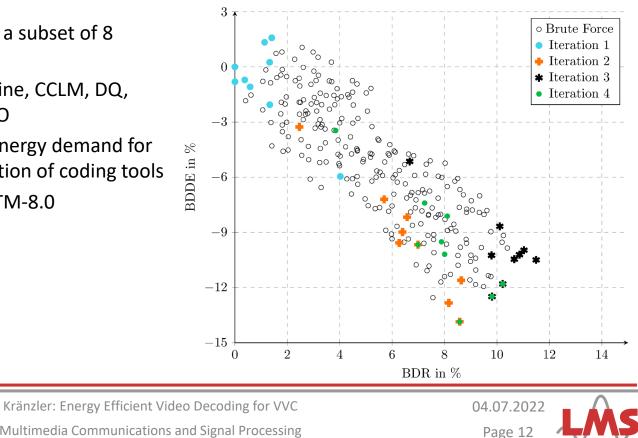
 18
 if BDDE $(u_{1,0}, u_{i,\nu}) \ge BDDE (u_{1,0}, u_{i-1,0}) \forall \nu$ then

 19
 Break;

 20
 end

 21
 $i = i + 1$;

 22
 end

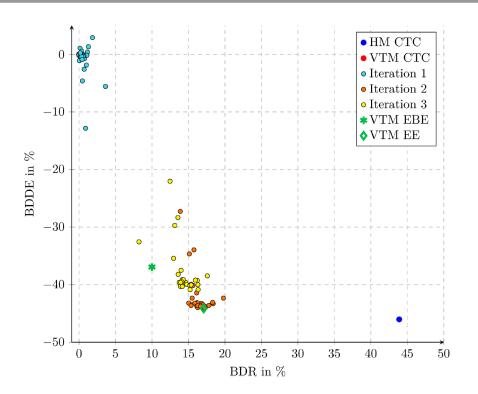


Kränzler: Energy Efficient Video Decoding for VVC

Evaluation of optimality on a subset of 8 coding tools:

- Selected tools: ALF, Affine, CCLM, DQ, . GPM, ISP, MTS, and SAO
- Encode and measure energy demand for • each possible combination of coding tools
- Decoder & Encoder: VTM-8.0
- Sequence: Class C

- Motivation
- Metrics & Setup
- Greedy Strategy Based Design Space Exploration
- Evaluation of DSE
- Conclusion

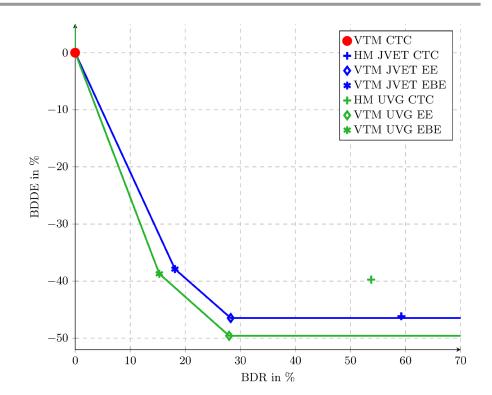

Kränzler: Energy Efficient Video Decoding for VVC Multimedia Communications and Signal Processing

Evaluation of DSE

Evaluation of DSE for Randomaccess:

- Encoder & Decoder: VTM
- Sequences: Class C
- Energy efficient (EE) profile:
 - BDR: 17.08%
 - BDDE: -44.13%
- Energy and bit rate efficient (EBE) profile:
 - BDR: 9.99%
 - BDDE: -36.93%

Kränzler: Energy Efficient Video Decoding for VVC

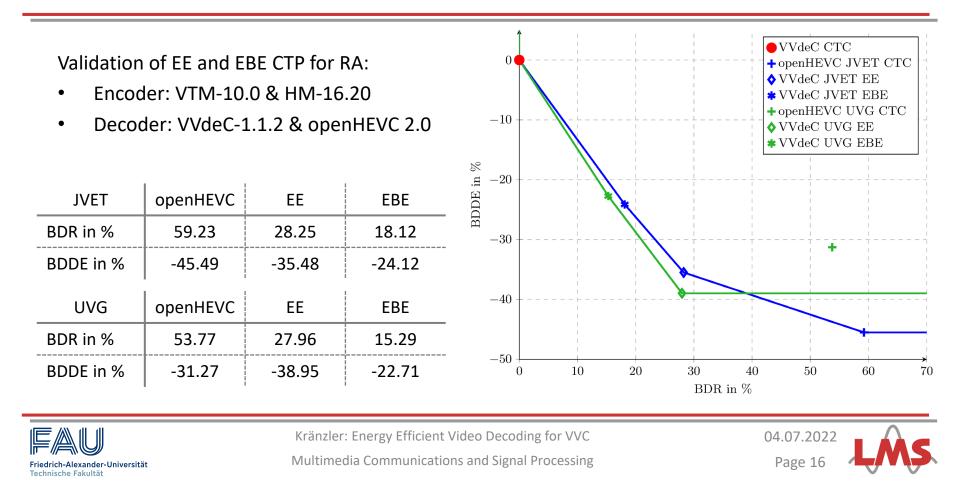


Evaluation of DSE

Validation of EE and EBE CTP for RA:

- Encoder: VTM-10.0 & HM-16.20
- Decoder: VTM-10.0 & HM-16.20
- Setups: JVET & UVG

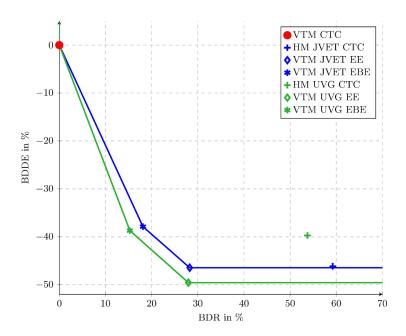
JVET	HM	EE	EBE
BDR in %	59.23	28.25	18.12
BDDE in %	-46.15	-46.46	-37.89
UVG	нм	FF	FBF
UVG	HM	EE	EBE
UVG BDR in %	HM 53.77	EE 27.96	EBE 15.29



Kränzler: Energy Efficient Video Decoding for VVC

Evaluation of DSE

- Motivation
- Metrics & Setup
- Greedy Strategy Based Design Space Exploration
- Evaluation of DSE
- Conclusion



Kränzler: Energy Efficient Video Decoding for VVC Multimedia Communications and Signal Processing 04.07.2022 Page 17

Conclusion

DSE for derivation of energy efficient profiles EE and EBE:

- EE CTP: Energy demand reduction of up to 50% with bit rate increase of 25%
- EBE CTP: 40% energy demand reduction with less than 15% additional bit rate

Kränzler: Energy Efficient Video Decoding for VVC

Multimedia Communications and Signal Processing

04.07.2022 Page 18

References

[1] https://www.de-cix.net/en/locations/frankfurt/statistics, accessed on 01.05.2022.

[2] F. Bossen et al., "JVET AHG report: Test model software development (AHG3)," Joint Video Exploration Team (JVET), document, JVET-U0003, Jan. 2021.

[3] F. Bossen et al., "JVET common test conditions and software reference configurations for SDR video," JVET-N1010, Mar. 2019

[4] A. Mercat et al., "UVG dataset: 50/120fps 4K sequences for video codec analysis and development," in Proc. ACM Multimedia Systems Conference, Istanbul, Turkey, Jun. 2020.

[5] M. Kränzler et al., "Energy Efficient Video Decoding for VVC Using a Greedy Strategy Based Design Space Exploration," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 7, pp. 4696-4709, Jul. 2022.

Kränzler: Energy Efficient Video Decoding for VVC

Thank you for your attention!

Kränzler: Energy Efficient Video Decoding for VVC

