A Template Matching Approach for Reference Picture Padding in Video Coding

Nicolas Horst, Priyanka Das, Mathias Wien Lehrstuhl für Bildverarbeitung RWTH Aachen University

- Subpicture Reference Padding
- Reference Subpicture Padding with Template Matching
 - What is Template Matching?
 - Template Matching in Video Coding
 - Template Matching used as Reference Subpicture Padding
 - Algorithm
 - Quality Configuration
 - Fast Configuration
 - Results
- Conclusion

- Subpicture were introduced with VVC
- Independently decodable subpictures are used for viewport adaptive streaming (360 video streaming)
- In this case subpicture boundaries behave like picture boundaries
- Special handling of picture boundaries when inter prediction is used (reference picture padding)

 Subpicture needs to be padded when pixels outside the subpicture are accessed during inter prediction

- Subpicture needs to be padded when pixels outside the subpicture are accessed during inter prediction
- In VVC padding is applied by repeating boundary pixels to the outside
- Solution has very low complexity

- Subpicture needs to be padded when pixels outside the subpicture are accessed during inter prediction
- In VVC padding is applied by repeating boundary pixels to the outside
- Solution has very low complexity
- Can we do better?

Reference Subpicture Padding with Template Matching

What is template matching?

- For a target block (red border) a template area is defined (black area)
- Search area is defined (blue area)

What is template matching?

- For a target block (red border) a template area is defined (black area)
- Search area is defined (blue area)
- Best match(es) for the template area is/are searched in the image (depicted in orange)
- Source blocks (solid red) of the best match(es) are used to predict target block

Averaging multiple candidates

- It has been shown that in the context intra prediction, averaging of multiple candidates can improve results
- Averaging of 5-6 candidates gives the best results for large search area

Template Matching in Video Coding

- Template matching has been used in video coding for prediction
 - Intra prediction:
 - Search area is in the current already decoded part of the picture
 - Averaging of multiple source blocks is beneficial
 - Inter prediction:
 - Search area is in the reference picture
 - Result of search is used to define or refine a motion vector
 - Complexity is a big issue
 - Trading rate for complexity is possible in intra prediction

Template Matching for Reference Subpicture Padding - Algorithm

- Divide the area that needs to be padded into target blocks
- While(area not fully padded):
 - Pad (top, bottom, left, right row):
 - For all target blocks in row:
 - Search for candidates
 - Average best candidates
 - Use as target block

- Pre-experiments:
 - Perform image extrapolation task with algorithm and compare with ground truth
 - MSE is used as metric
- Findings:
 - Decreasing target block size from 2x2, as done in other works, to 1x1 increases quality
 - Increasing template size larger than 3x3 doesn't increase quality but complexity
 - Averaging multiple candidates is beneficial (as for TM used for intra prediction)
 - Size of search area has impact on the quality

Configuration for the quality setting

- We defined a configuration that focuses on high prediction quality without considering complexity too much
- Search area is *s* × *s* wide and centered around target block at the current border
- We reduce the search area for pixels far away from the original subpicture border to reduce complexity to a feasible level
 - s = 32, distance ≤ 32
 - $s = 16, 32 < \text{distance} \le 64$
 - s = 8, distance > 64
 - 5 best candidates are averaged
 - SAD is used as distortion metric for this and the following setting

- Based on the histogram we defined a smaller number of candidates to check (right top figure) to reduce complexity
- We reduced the size of the template in dimension perpendicular to boundary
- We increased the target block in the dimension parallel to boundary, this didn't reduce quality in pre-experiments in contrast to the other dimension
- Complexity is reduced by a factor of 330 compared to quality setting with s = 32
- Adaptive candidate selection, which selects number of candidates based on threshold that is calculated from minimum SAD of candidates

Source pixel candidates for target pixel

Target block and template

Results

- Simulation on 360 sequences that were converted from ERP to CMP format and partitioned into 384x384 subpictures
- SDR sequences were simulated too
- JVET Common Test Conditions are followed

Visual example Anchor left Ours right

360° moving camera set				
sequence	quality	fast	$fast_{bestC}$	
Balboa	-0.35	-0.20	-0.20	
BranCastle2	-0.21	-0.11	-0.09	
Broadway	-0.60	-0.36	-0.33	
$ChairliftRide^*$	-0.46	-0.29	-0.25	
Landing2	-0.34	-0.19	-0.17	
$SkateboardInLot^*$	-0.05	-0.10	-0.07	
HarborBiking2*	-0.66	-0.41	-0.36	
KiteFliteWalking2*	-0.34	-0.20	-0.19	
average	-0.38	-0.23	-0.21	
* sequences used for pre-experiments				

$360^{\circ} static camera set$			
sequence	quality	fast	
Gaslamp*	-0.05	-0.04	
Harbor [*]	-0.06	-0.04	
KiteFlite*	-0.02	-0.01	
Trolley [*]	-0.05	-0.02	
average	-0.04	-0.03	

* sequences used for pre-experiments

SDR set				
sequence	quality	fast		
Campfire	-0.09	-0.02		
CatRobot	-0.47	-0.25		
DaylightRoad2	-0.48	-0.25		
FoodMarket4	-0.64	-0.45		
ParkRunning3	-0.35	-0.09		
Tango2	-0.85	-0.59		
average	-0.48	-0.28		

Conclusion

- Template Matching can be successfully used for reference subpicture padding to improve coding performance
- Complexity is an issue with template matching
- Preliminary results show that complexity can be reduced by ~330 times while maintaining about 60% of the BDrate reduction, subject of current research to improve this
- Artifacts at subpicture boundaries can be reduced

Thanks for your attention

- We found that averaging over multiple candidates reduces quality for the fast setting
- We assume that this is due to the low number of candidates for the fast setting
- We introduced a candidate selection process that works as follows:
 - Multiply the minimum SAD with a factor α
 - Average all candidates with corresponding distortion *d* for which $d < \alpha \cdot d_{\min}$
- Used in the fast setting, fast_{bestC} uses only the best candidate

- We computed histograms of the relative position of candidates in pre-experiments
- Example histogram for KiteFliteWalking2 sequence is given on the right, logarithmic scale
- For all tested sequences, a T-shaped structure can be observed

