ENCODING COMPLEXITY ANALYSIS THROUGH THE MEASUREMENT OF THE SEARCH SPACE

SVCP 2022 - Summer School on Video Coding and Processing

Presenter:

Adam Wieckowski

Video Communications and Application Dep. Fraunhofer Heinrich Hertz Institute (HHI) Berlin, Germany

Introduction

- Based on the paper:
 - VVC Search Space Analysis including an Open, Optimized Implementation
 - In IEEE Transactions on Consumer Electronics, vol. 68, no. 2, pp. 127-138, May 2022.
- Comparisons based on 3 encododers
 - HM 16.22
 - VTM 11.0
 - VVenC 1.0.0

Agenda

- What is complexity in video encoding?
 - Encoding vs decoding
- Empirical search space quantification
 - Measurement
 - Application to partitioning
 - Application to mode search
- Conclusion

Video coding complexity

- Video coding is complex
 - In literature: VVC encoding 10x more complex than HEVC, decoding 2x
- Coding complexity is measurable
 - Runtime
 - Energy consumption (electric bill, device heat)
- What causes the complexity and how can it be controlled?
- Does the complexity depend on the standard used?

Encoding vs decoding complexity

What is video decoding?

- Fixed sequence of steps described in the standard specification
- The **worst case** can be quantified, using e.g. number of Multiply-Add-Operations

What is video encoding?

- Video encoders incorporate the decoder
- Beyond that its basically a search problem
 - Decoder is part of the cost function

Video encoding as a search problem

- Usual formulation: find a sequence of N bits, such that (2^N possibilities)
 - The sequence is compliant with a given standard
 - Minimizing the distortion between the decoded video and the original
- Components influencing enc. complexity: bitrate, complexity of decode, accuracy
- Contradiction
 - Assumption: VVC provides 50% bitrate savings vs HEVC
 - N half as large for VVC as for HEVC, at double decode complexity
 - VVC encoding should actually be less complex?
- Smart search algorithms only evaluate fraction of overall search space
 - How big is the actual visited search space?
 - Why is this search space larger for each next generation codec?

Empirical search space quantification

Recap

- Decoder is part of the encoder cost function
- Idea
 - Quantify how many times a sample is decoded during encoding
- Problem
 - When is a sample decoded during encoding?
- Solution
 - During video decoding each sample is
 - Only contained in a single block
 - Dequantized maximally once
 - > Measure the plurality of partitioning and quantization test per sample

Empirical search space quantification

Partitioning search

- Encoder search visits a set of $i_P \in 1...N_P$ blocks during encoding of a frame
 - A frame has N_s samples
 - Each block has a height of $W_P(i)$ and $H_P(i)$
- Partitioning overhead is thus:

$$S_{\rm P} = \sum_{i=1...N_{\rm P}} W_{\rm P}(i) \cdot H_{\rm P}(i) / N_{\rm S}$$

Cumulative area of blocks visited during encoding normalized to frame size

Empirical search space quantification Coding mode search

In each visited block, the encoder tests a plurality of coding modes

- Often most complex step is the rate-distortion-optimized quantization (RDOQ)
- The RDOQ is applied to $i_Q = 1...N_Q$ blocks of size $W_Q(i) \cdot H_Q(i)$
- Quantization overhead is thus:

$$S_{\rm Q} = \sum_{i=1...\rm Nq} W_{\rm Q}(i) \cdot H_{\rm Q}(i) / (N_{\rm S} \cdot S_{\rm P})$$

Cumulative quantized area, normalized to the partitioning area

• Overall encoding overhead (i.e. **empirical search space**):
$$S = S_O \cdot S_P$$

Partitioning search space Exemplary for HEVC

- Assuming the G-BFOS search algorithm
 - Forward-only search
 - Each sample once in each config.
- For HEVC assuming CTU of 64x64
 - 4 different CU sizes
 - PU splits also count as partitioning
 - Easy to enumerate
 - Simple formulation of upper bound

Depth / O	CU size	Allow PU splits				
	0 / 64x64	NxN, N/2xN/2, NxN/2, N/2xN,				
1 / 32x32		4x assymetric modes				
	2 / 16x16					
:	3/ 8x 8	NxN, N/2xN/2, NxN/2, N/2xN				
Partition	ings per	sample				
Intra	4		5			
Inter	4		28			

Recap partitioning in VVC

- Five recurisve splits
 - QT only with a QT
- Exponential growth
- Empirical upper bound
 - Assuming full traversal with G-BFOS, including

OT

BT

BT

- Chroma separate tree
- Local dual tree, mode restrictions
- Depends on high-level partitioning parameters
- Figure
 - CTU128, QT: 128x128 to 8x8
 - BT and TT splits: 0 to 4 recursion levels

TΤ

TT

Upper bounds for VVC search space

- QT depth is simply the difference between min and max block size
 - BTT depth has to be kept much lower to limit complexity
- VVC partitioning space can be much larger than HEVC
 - For practical encoders it can be very well kept lower

	Intra Frames					P/B Frames						
	СТИ	Max size		Max depth		hound	СТИ	Max size		Max depth		hound
	CIU	QT	BTT	QT	BTT	bound	CIU	QT	BTT	QT	BTT	bound
faster	64	64	N/A	4	0	4.67	64	64	N/A	4	0	5.00
fast	64	64	32	4	1	14.33	64	64	N/A	4	0	5.00
medium	128	128	32	4	2	37.50	128	128	128	4	1	24.00
slow	128	128	32	4	3	85.42	128	128	128	4	2	75.00
slower	128	128	32	4	3	85.42	128	128	128	4	3	220.75
VTM-11.0	128	128	32	4	3	85.42	128	128	128	4	3	220.75

Empirical results for Inter frames

- Measured on JVET CTC Classes A1, A2, and B, in CTC encoding conditions
- Observations for HM
 - HM has no CU depth speedup
 - ... but has PU split speedups
- VVenC slower visits less partitions than VTM, bcs of more aggresive optimization
- The larger the search space, the easier it is to limit
- Search space varies, e.g. with target quality (more so for VVencC)

		Partitioning S _P					
	avg	min	max	bound			
VVenC faster	2.39	1.71	3.31	5.00			
VVenC fast	2.34	1.68	3.23	5.00			
VVenC medium	4.69	3.32	6.75	24.00			
VVenC slow	8.98	6.01	14.12	75.00			
VVenC slower	23.71	13.49	42.04	220.75			
VTM	29.18	17.54	49.60	220.75			
HM CU	3.95	3.95	3.95	4.00			
HM CU+PU	15.51	13.97	17.77	28.00			

Exponential growth, theoretical and measured for P/B frames

- Fast algorithm can limit the growth
 - Both base and exponent reduced
 - Exponent bound: ~1.25 x *Depth*
 - Exponent average: ~0.76 x *Depth*
- The curves diverge
 - The larger the search space, the more opportunities for limitation

Overall search space

First observations

- Why is partitioning such a popular topic for optimization in literature?
 - $S_P >> S_Q$ for both VTM and HM
 - In VVenC, which was Pareto-Optimized, S_P ~ S_Q (except for *slower*)

It is hard to define an upper bound for S_Q

		Partitio	ning S _P	Quantization S _o			
	avg	min	max	bound	avg	min	max
VVenC faster	2.39	1.71	3.31	5.00	3.15	2.92	3.55
VVenC fast	2.34	1.68	3.23	5.00	4.46	4.13	5.05
VVenC medium	4.69	3.32	6.75	24.00	5.81	5.29	6.59
VVenC slow	8.98	6.01	14.12	75.00	10.08	9.37	10.99
VVenC slower	23.71	13.49	42.04	220.75	13.08	11.85	14.84
VTM-11.0	29.18	17.54	49.60	220.75	14.28	12.35	16.91
HM-16.22 CU	3.95	3.95	3.95	4.00	20.93	17.18	27.27
HM-16.22 CU+PU	15.51	13.97	17.77	28.00	5.32	4.84	6.05

Overall search space

Further observations

- VVenC medium has a search space similar to HM, but provides ~30% BD-rate gain
- Average $S_Q \sim 3x$ larger in VTM than HM, $S_P \sim 2x$ larger in VTM than HM
 - Partitioning adds complexity to VVC, but new encodings modes add even more
 - E.g. a lot of new merge modes

		Partitio	ning S _P	Quantization S _o			
	avg	min	max	bound	avg	min	max
VVenC faster	2.39	1.71	3.31	5.00	3.15	2.92	3.55
VVenC fast	2.34	1.68	3.23	5.00	4.46	4.13	5.05
VVenC medium	4.69	3.32	6.75	24.00	5.81	5.29	6.59
VVenC slow	8.98	6.01	14.12	75.00	10.08	9.37	10.99
VVenC slower	23.71	13.49	42.04	220.75	13.08	11.85	14.84
VTM-11.0	29.18	17.54	49.60	220.75	14.28	12.35	16.91
HM-16.22 CU	3.95	3.95	3.95	4.00	20.93	17.18	27.27
HM-16.22 CU+PU	15.51	13.97	17.77	28.00	5.32	4.84	6.05

Conclusions

Empirical search space measurement

- Recap of the presentation
 - Empirical measurement of search space was presented
 - Data was presented and discussed, with focus on partitioning
- Conclusions
 - Partitioning is complex, but is already very effectively reduced
 - Is partitioning in VTM over-dimensioned?
- Shortcomings
 - Only measures the CU-loop search space
- Outlook
 - Measure distortion calculations per sample (i.e. prediction overhead)
 - Evaluate the ratio of prediction overhead to quantization overhead

ENCODING COMPLEXITY ANALYSIS THROUGH THE MEASUREMENT OF THE SEARCH SPACE

Questions?

