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◼︎ Deep generative models have been successfully applied to 
tasks like image super-resolution 


◼︎ Missing is a comparison of GANs and Normalizing Flow

◼︎ network structures as comparable as possible

◼︎ similar computational complexity

◼︎ same receptive field.
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◼︎ Variational autoencoders

◼︎ Autoregressive models

◼︎ Generative adversarial networks

◼︎ Normalizing flows

◼︎ Diffusion models (!)

◼︎ ..hybrid approaches
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Additional conditional 
information can be used to 
steer the network
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Figure 2: Computational graphs for forward and inverse propagation. A coupling layer applies a
simple invertible transformation consisting of scaling followed by addition of a constant offset to
one part x2 of the input vector conditioned on the remaining part of the input vector x1. Because of
its simple nature, this transformation is both easily invertible and possesses a tractable determinant.
However, the conditional nature of this transformation, captured by the functions s and t, significantly
increase the flexibility of this otherwise weak function. The forward and inverse propagation
operations have identical computational cost.

3.2 Coupling layers
Computing the Jacobian of functions with high-dimensional domain and codomain and computing
the determinants of large matrices are in general computationally very expensive. This combined
with the restriction to bijective functions makes Equation 2 appear impractical for modeling arbitrary
distributions.

As shown however in [17], by careful design of the function f , a bijective model can be learned which
is both tractable and extremely flexible. As computing the Jacobian determinant of the transformation
is crucial to effectively train using this principle, this work exploits the simple observation that the
determinant of a triangular matrix can be efficiently computed as the product of its diagonal terms.

We will build a flexible and tractable bijective function by stacking a sequence of simple bijections.
In each simple bijection, part of the input vector is updated using a function which is simple to invert,
but which depends on the remainder of the input vector in a complex way. We refer to each of these
simple bijections as an affine coupling layer. Given a D dimensional input x and d < D, the output
y of an affine coupling layer follows the equations

y1:d = x1:d (4)
yd+1:D = xd+1:D � exp

�
s(x1:d)

�
+ t(x1:d), (5)

where s and t stand for scale and translation, and are functions from Rd 7! RD�d, and � is the
Hadamard product or element-wise product (see Figure 2(a)).

3.3 Properties
The Jacobian of this transformation is

@y

@xT
=

"
Id 0

@yd+1:D

@xT
1:d

diag
�
exp [s (x1:d)]

�
#
, (6)

where diag
�
exp [s (x1:d)]

�
is the diagonal matrix whose diagonal elements correspond to the vector

exp [s (x1:d)]. Given the observation that this Jacobian is triangular, we can efficiently compute
its determinant as exp

hP
j s (x1:d)j

i
. Since computing the Jacobian determinant of the coupling

layer operation does not involve computing the Jacobian of s or t, those functions can be arbitrarily
complex. We will make them deep convolutional neural networks. Note that the hidden layers of s
and t can have more features than their input and output layers.

Another interesting property of these coupling layers in the context of defining probabilistic models
is their invertibility. Indeed, computing the inverse is no more complex than the forward propagation
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Jacobian of affine coupling layer:
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one part x2 of the input vector conditioned on the remaining part of the input vector x1. Because of
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increase the flexibility of this otherwise weak function. The forward and inverse propagation
operations have identical computational cost.
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one part x2 of the input vector conditioned on the remaining part of the input vector x1. Because of
its simple nature, this transformation is both easily invertible and possesses a tractable determinant.
However, the conditional nature of this transformation, captured by the functions s and t, significantly
increase the flexibility of this otherwise weak function. The forward and inverse propagation
operations have identical computational cost.
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exp [s (x1:d)]. Given the observation that this Jacobian is triangular, we can efficiently compute
its determinant as exp
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j s (x1:d)j

i
. Since computing the Jacobian determinant of the coupling

layer operation does not involve computing the Jacobian of s or t, those functions can be arbitrarily
complex. We will make them deep convolutional neural networks. Note that the hidden layers of s
and t can have more features than their input and output layers.

Another interesting property of these coupling layers in the context of defining probabilistic models
is their invertibility. Indeed, computing the inverse is no more complex than the forward propagation
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Jacobian of affine coupling layer:
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increase the flexibility of this otherwise weak function. The forward and inverse propagation
operations have identical computational cost.

3.2 Coupling layers
Computing the Jacobian of functions with high-dimensional domain and codomain and computing
the determinants of large matrices are in general computationally very expensive. This combined
with the restriction to bijective functions makes Equation 2 appear impractical for modeling arbitrary
distributions.

As shown however in [17], by careful design of the function f , a bijective model can be learned which
is both tractable and extremely flexible. As computing the Jacobian determinant of the transformation
is crucial to effectively train using this principle, this work exploits the simple observation that the
determinant of a triangular matrix can be efficiently computed as the product of its diagonal terms.

We will build a flexible and tractable bijective function by stacking a sequence of simple bijections.
In each simple bijection, part of the input vector is updated using a function which is simple to invert,
but which depends on the remainder of the input vector in a complex way. We refer to each of these
simple bijections as an affine coupling layer. Given a D dimensional input x and d < D, the output
y of an affine coupling layer follows the equations

y1:d = x1:d (4)
yd+1:D = xd+1:D � exp

�
s(x1:d)

�
+ t(x1:d), (5)

where s and t stand for scale and translation, and are functions from Rd 7! RD�d, and � is the
Hadamard product or element-wise product (see Figure 2(a)).

3.3 Properties
The Jacobian of this transformation is

@y

@xT
=

"
Id 0

@yd+1:D

@xT
1:d

diag
�
exp [s (x1:d)]

�
#
, (6)

where diag
�
exp [s (x1:d)]

�
is the diagonal matrix whose diagonal elements correspond to the vector

exp [s (x1:d)]. Given the observation that this Jacobian is triangular, we can efficiently compute
its determinant as exp

hP
j s (x1:d)j

i
. Since computing the Jacobian determinant of the coupling

layer operation does not involve computing the Jacobian of s or t, those functions can be arbitrarily
complex. We will make them deep convolutional neural networks. Note that the hidden layers of s
and t can have more features than their input and output layers.

Another interesting property of these coupling layers in the context of defining probabilistic models
is their invertibility. Indeed, computing the inverse is no more complex than the forward propagation

4

Published as a conference paper at ICLR 2017

(a) Forward propagation (b) Inverse propagation

Figure 2: Computational graphs for forward and inverse propagation. A coupling layer applies a
simple invertible transformation consisting of scaling followed by addition of a constant offset to
one part x2 of the input vector conditioned on the remaining part of the input vector x1. Because of
its simple nature, this transformation is both easily invertible and possesses a tractable determinant.
However, the conditional nature of this transformation, captured by the functions s and t, significantly
increase the flexibility of this otherwise weak function. The forward and inverse propagation
operations have identical computational cost.

3.2 Coupling layers
Computing the Jacobian of functions with high-dimensional domain and codomain and computing
the determinants of large matrices are in general computationally very expensive. This combined
with the restriction to bijective functions makes Equation 2 appear impractical for modeling arbitrary
distributions.

As shown however in [17], by careful design of the function f , a bijective model can be learned which
is both tractable and extremely flexible. As computing the Jacobian determinant of the transformation
is crucial to effectively train using this principle, this work exploits the simple observation that the
determinant of a triangular matrix can be efficiently computed as the product of its diagonal terms.

We will build a flexible and tractable bijective function by stacking a sequence of simple bijections.
In each simple bijection, part of the input vector is updated using a function which is simple to invert,
but which depends on the remainder of the input vector in a complex way. We refer to each of these
simple bijections as an affine coupling layer. Given a D dimensional input x and d < D, the output
y of an affine coupling layer follows the equations

y1:d = x1:d (4)
yd+1:D = xd+1:D � exp

�
s(x1:d)

�
+ t(x1:d), (5)

where s and t stand for scale and translation, and are functions from Rd 7! RD�d, and � is the
Hadamard product or element-wise product (see Figure 2(a)).

3.3 Properties
The Jacobian of this transformation is

@y

@xT
=

"
Id 0

@yd+1:D

@xT
1:d

diag
�
exp [s (x1:d)]

�
#
, (6)

where diag
�
exp [s (x1:d)]

�
is the diagonal matrix whose diagonal elements correspond to the vector

exp [s (x1:d)]. Given the observation that this Jacobian is triangular, we can efficiently compute
its determinant as exp

hP
j s (x1:d)j

i
. Since computing the Jacobian determinant of the coupling

layer operation does not involve computing the Jacobian of s or t, those functions can be arbitrarily
complex. We will make them deep convolutional neural networks. Note that the hidden layers of s
and t can have more features than their input and output layers.

Another interesting property of these coupling layers in the context of defining probabilistic models
is their invertibility. Indeed, computing the inverse is no more complex than the forward propagation

4

Published as a conference paper at ICLR 2017

(a) Forward propagation (b) Inverse propagation

Figure 2: Computational graphs for forward and inverse propagation. A coupling layer applies a
simple invertible transformation consisting of scaling followed by addition of a constant offset to
one part x2 of the input vector conditioned on the remaining part of the input vector x1. Because of
its simple nature, this transformation is both easily invertible and possesses a tractable determinant.
However, the conditional nature of this transformation, captured by the functions s and t, significantly
increase the flexibility of this otherwise weak function. The forward and inverse propagation
operations have identical computational cost.

3.2 Coupling layers
Computing the Jacobian of functions with high-dimensional domain and codomain and computing
the determinants of large matrices are in general computationally very expensive. This combined
with the restriction to bijective functions makes Equation 2 appear impractical for modeling arbitrary
distributions.

As shown however in [17], by careful design of the function f , a bijective model can be learned which
is both tractable and extremely flexible. As computing the Jacobian determinant of the transformation
is crucial to effectively train using this principle, this work exploits the simple observation that the
determinant of a triangular matrix can be efficiently computed as the product of its diagonal terms.

We will build a flexible and tractable bijective function by stacking a sequence of simple bijections.
In each simple bijection, part of the input vector is updated using a function which is simple to invert,
but which depends on the remainder of the input vector in a complex way. We refer to each of these
simple bijections as an affine coupling layer. Given a D dimensional input x and d < D, the output
y of an affine coupling layer follows the equations

y1:d = x1:d (4)
yd+1:D = xd+1:D � exp

�
s(x1:d)

�
+ t(x1:d), (5)

where s and t stand for scale and translation, and are functions from Rd 7! RD�d, and � is the
Hadamard product or element-wise product (see Figure 2(a)).

3.3 Properties
The Jacobian of this transformation is

@y

@xT
=

"
Id 0

@yd+1:D

@xT
1:d

diag
�
exp [s (x1:d)]

�
#
, (6)

where diag
�
exp [s (x1:d)]

�
is the diagonal matrix whose diagonal elements correspond to the vector

exp [s (x1:d)]. Given the observation that this Jacobian is triangular, we can efficiently compute
its determinant as exp

hP
j s (x1:d)j

i
. Since computing the Jacobian determinant of the coupling

layer operation does not involve computing the Jacobian of s or t, those functions can be arbitrarily
complex. We will make them deep convolutional neural networks. Note that the hidden layers of s
and t can have more features than their input and output layers.

Another interesting property of these coupling layers in the context of defining probabilistic models
is their invertibility. Indeed, computing the inverse is no more complex than the forward propagation

4

Jacobian of affine coupling layer:

(deep) neural networks

Not invertible!



Human Ability of Counting the Number of Instruments in Polyphonic Music

Fabian-Robert Stöter
International Audio Laboratories Erlangen

Slide   

© Audiolabs 2022
Slide Konstantin Schmidt

Comparing NF and GANs

For Super-resolution
Comparing NF and GANs

5

◼︎ Generative adversarial networks allow for 

◼︎ flexible design of the networks 😃

◼︎ are hard to optimize and need intensive parameter 

tunings 😠

◼︎ Flow-based models are easy to train 😊


◼︎ Networks need to be invertible with a latent domain of the 
same dimension as the output image 😒
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◼︎ SRGAN (arXiv:1609.04802)

◼︎ Rezeptive field:192 pixel

◼︎ 0.15 MOPS per pixel


Channel dim Kernel size

Conv 3x64 9x9

17*Conv 64x64 3x3

2*Upsampling 
Conv 64x256? 3x3

Conv 64x3 9x9

◼︎ Conditional Normalizing Flow

◼︎ Rezeptive field:192 pixel

◼︎ 0.16 MOPS per pixel


Channel dim Kernel size

16 Affine 
Coupling 6x64->64x12 3x3

3 Conv layer 
per 

A.Coupling
64x64 3x3

https://arxiv.org/abs/1609.04802
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◼︎ PreLu activations

◼︎ Trained on Flickr HQ dataset

◼︎ BatchNorm for all models (no ActNorm for Flow)

◼︎ Evaluated on CelebA

◼︎ All networks trained with batch-size of 64

◼︎ Random crops of 256 x 256 pixels were used 

for training
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SRGAN Norm. 
Flow

SR (no 
GAN)

FID 
smaller 
better

3.858  6.026 5.822

LPIPS
smaller 
better

0.1480 0.2061 0.22674

Learned Perceptual Image 
Patch Similarity (LPIPS): 
metric based on the 
activations of first layers of 
classification network

Frechet Inception Distance 
(FID): metric based on the 
distribution of activations of 
deeper layers of 
classification network
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Bicubic:

Original: GAN:

Flow:


