

Applications of Non-Regular Image Sampling using LFCR (Locally Fully Connected Reconstruction Network)

Simon Grosche

simon.grosche@fau.de

- Basics of Non-Regular Sampling
- Locally Fully Connected Reconstruction Network
- Application: Tetromino Sampling
- Conclusion and Future Work

Quarter Sampling (QS) and Three-Quarter Sampling (TQS)

QS: M. Schöberl et al., "Increasing imaging resolution by covering your sensor," in Proc. IEEE International Conference on Image Processing (ICIP), Brussels, Sept. 2011, pp. 1897–1900. TQS: J. Seller et al., "Increasing imaging resolution by non-regular sampling and joint sparse deconvolution and extrapolation," IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 2, pp. 308–322, Feb. 2019.

S. Grosche: Applications of Non-Regular Image Sampling using LFCR Chair of Multimedia Communications and Signal Processing

Quarter Sampling (QS) and Three-Quarter Sampling (TQS)

QS: M. Schöberl et al., "Increasing imaging resolution by covering your sensor," in Proc. IEEE International Conference on Image Processing (ICIP), Brussels, Sept. 2011, pp. 1897–1900. TQS: J. Seller et al., "Increasing imaging resolution by non-regular sampling and joint sparse deconvolution and extrapolation," IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 2, pp. 308–322, Feb. 2019.

Quarter Sampling (QS) and Three-Quarter Sampling (TQS)

QS: M. Schöberl et al., "Increasing imaging resolution by covering your sensor," in Proc. IEEE International Conference on Image Processing (ICIP), Brussels, Sept. 2011, pp. 1897–1900. TQS: J. Seller et al., "Increasing imaging resolution by non-regular sampling and joint sparse deconvolution and extrapolation," IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 2, pp. 308–322, Feb. 2019.

S. Grosche: Applications of Non-Regular Image Sampling using LFCR Chair of Multimedia Communications and Signal Processing

Example: Image with vertical stripes with 1 px width

S. Grosche: Applications of Non-Regular Image Sampling using LFCR Chair of Multimedia Communications and Signal Processing

Example: Image with vertical stripes with 1 px width

S. Grosche: Applications of Non-Regular Image Sampling using LFCR Chair of Multimedia Communications and Signal Processing

Example: Image with vertical stripes with 1 px width

S. Grosche: Applications of Non-Regular Image Sampling using LFCR Chair of Multimedia Communications and Signal Processing

Example: Image with vertical stripes with 1 px width

S. Grosche: Applications of Non-Regular Image Sampling using LFCR Chair of Multimedia Communications and Signal Processing

Example: Image with vertical stripes with 1 px width

S. Grosche: Applications of Non-Regular Image Sampling using LFCR Chair of Multimedia Communications and Signal Processing

Reconstruction

Reconstruction algorithms

- Linear interpolation, nearest neighbor interpolation
- Frequency Selective Reconstruction (FSR)

FSR: J. Seller et al., "Resampling images to a regular grid from a non-regular subset of pixel positions using frequency selective reconstruction," IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 4540–4555, Nov. 2015. L-JSDE: S. Grosche et al., "Boosting compressed sensing using local measurements and sliding window reconstruction," IEEE Transactions on Image Processing, vol. 29, pp. 7931–7944, Jul. 2020.

- - -

Reconstruction

Reconstruction algorithms

- Linear interpolation, nearest neighbor interpolation
- Frequency Selective Reconstruction (FSR)

(Local) Joint Sparse Deconvolution and Extrapolation (L-JSDE)

FSR: J. Seiler et al., "Resampling images to a regular grid from a non-regular subset of pixel positions using frequency selective reconstruction," IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 4540–4555, Nov. 2015. L-JSDE: S. Grosche et al., "Boosting compressed sensing using local measurements and sliding window reconstruction," IEEE Transactions on Image Processing, vol. 29, pp. 7931–7944, Jul. 2020.

- - -

Reconstruction algorithms

- Linear interpolation, nearest neighbor interpolation
- Frequency Selective Reconstruction (FSR)

(Local) Joint Sparse Deconvolution and Extrapolation (L-JSDE)

What about: Data driven approaches, neural networks (?)

FSR: J. Seiler et al., "Resampling images to a regular grid from a non-regular subset of pixel positions using frequency selective reconstruction," IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 4540–4555, Nov. 2015. L-JSDE: S. Grosche et al., "Boosting compressed sensing using local measurements and sliding window reconstruction," IEEE Transactions on Image Processing, vol. 29, pp. 7931–7944, Jul. 2020.

- - -

Neural Network Reconstruction – Concepts

- Issue: Non-regular sampling is not shift invariant
 - Shifted reference image leads to different measured values and different reconstruction
 - Convolutional layers seem to be inappropriate

S. Grosche et al., "A Novel End-To-End Network for Reconstruction of Non-Regularly Sampled Image Dat Using Locally Fully Connected Layers," in Proc. International Workshop on Multimedia Signal Processing, Tampere, Oct. 2021

Neural Network Reconstruction – Concepts

- Issue: Non-regular sampling is not shift invariant
 - Shifted reference image leads to different measured values and different reconstruction
 - Convolutional layers seem to be inappropriate

- Solution:
 - Re-introduce shift-invariance by repeating sampling pattern/sensor layout after several pixels, e.g., after 8 pixels

S. Grosche et al., "A Novel End-To-End Network for Reconstruction of Non-Regularly Sampled Image Dat Using Locally Fully Connected Layers," in Proc. International Workshop on Multimedia Signal Processing, Tampere, Oct. 2021

Neural Network Reconstruction – Concepts

- Issue: Non-regular sampling is not shift invariant
 - Shifted reference image leads to different measured values and different reconstruction
 - Convolutional layers seem to be inappropriate

- Solution:
 - Re-introduce shift-invariance by repeating sampling pattern/sensor layout after several pixels, e.g., after 8 pixels
 - Start with convolutional layer with stride (8 pixels)
 - ▶ Next, use several convolutional layers with kernel size $1 \times 1 \rightarrow$ fully connected
 - As last layer, use de-convolution with stride (8 pixels)

S. Grosche et al., "A Novel End-To-End Network for Reconstruction of Non-Regularly Sampled Image Dat Using Locally Fully Connected Layers," in Proc. International Workshop on Multimedia Signal Processing, Tampere, Oct. 2021

Locally Fully Connected Network (LFCR)

S. Grosche et al., "A Novel End-To-End Network for Reconstruction of Non-Regularly Sampled Image Dat Using Locally Fully Connected Layers," in Proc. International Workshop on Multimedia Signal Processing, Tampere, Oct. 2021.

S. Grosche: Applications of Non-Regular Image Sampling using LFCR Chair of Multimedia Communications and Signal Processing

Append a VDSR Network

S. Grosche et al., "A Novel End-To-End Network for Reconstruction of Non-Regularly Sampled Image Dat Using Locally Fully Connected Layers," in Proc. International Workshop on Multimedia Signal Processing, Tampere, Oct 2021. VDSR: J. Kim et al., "Accurate image super-resolution using very deep convolutional networks,"in Proc. Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016.

S. Grosche: Applications of Non-Regular Image Sampling using LFCR Chair of Multimedia Communications and Signal Processing

LFCR Network - Results

LFCR vs LFCR+VDSR:

	Quarter	Three-quarter
	sampling	sampling
LFCR (only)	27.61 dB	28.45 dB
LFCR+VDSR	28.13 dB (+0.52 dB)	29.12 dB (+0.67 dB)

LFCR Network - Results

LFCR vs LFCR+VDSR:

	Quarter	Three-quarter
	sampling	sampling
LFCR (only)	27.61 dB	28.45 dB
LFCR+VDSR	28.13 dB (+0.52 dB)	29.12 dB (+0.67 dB)

Simulation results:

	Urban 100	Tecnick
	PSNR / SSIM	PSNR / SSIM
Low-resolution sensor		
BIC + VDSR [14]	28.92 / 0.9299	36.20 / 0.9746
prop. LFCR (only)	28.35 / 0.9243	35.86 / 0.9736
prop. LFCR + VDSR	28.73 / 0.9283	36.01 / 0.9739
Quarter sampling sensor		
FSR [5], [6]	27.08 / 0.9116	34.11 / 0.9644
FSR + VDSR-QS [15]	29.29 / 0.9382	35.58 / 0.9709
prop. LFCR (only)	28.65 / 0.9309	35.35 / 0.9698
prop. LFCR + VDSR	29.76 / 0.9425	35.84 / 0.9720
Three-quarter sampling sensor		
L-JSDE [10], [11]	27.09 / 0.9083	34.22 / 0.9654
prop. LFCR (only)	29.47 / 0.9373	36.40 / 0.9751
prop. LFCR + VDSR	30.03 / 0.9421	36.66 / 0.9758

S. Grosche: Applications of Non-Regular Image Sampling using LFCR

LFCR Network - Results

LFCR vs LFCR+VDSR:

	Quarter	Three-quarter
	sampling	sampling
LFCR (only)	27.61 dB	28.45 dB
LFCR+VDSR	28.13 dB (+0.52 dB)	29.12 dB (+0.67 dB)

Simulation results:

	Urban 100	Tecnick
	PSNR / SSIM	PSNR / SSIM
Low-resolution sensor		
BIC + VDSR [14]	28.92 / 0.9299	36.20 / 0.9746
prop. LFCR (only)	28.35 / 0.9243	35.86 / 0.9736
prop. LFCR + VDSR	28.73 / 0.9283	36.01 / 0.9739
Quarter sampling sensor		
FSR [5], [6]	27.08 / 0.9116	34.11 / 0.9644
FSR + VDSR-QS [15]	29.29 / 0.9382	35.58 / 0.9709
prop. LFCR (only)	28.65 / 0.9309	35.35 / 0.9698
prop. LFCR + VDSR	29.76 / 0.9425	35.84 / 0.9720
Three-quarter sampling sensor		
L-JSDE [10], [11]	27.09 / 0.9083	34.22 / 0.9654
prop. LFCR (only)	29.47 / 0.9373	36.40 / 0.9751
prop. LFCR + VDSR	30.03 / 0.9421	36.66 / 0.9758

Friedrich-Alexander-Universität Technische Fakultät S. Grosche: Applications of Non-Regular Image Sampling using LFCR

SVCP, 4th July 2022 Page 9

- QS and TQS sensors have reduced light efficiency compared to LR sensor
- How to increase light efficiency to 100% while maintaining non-regularity?

G. D. Galdo et al., "Apparatus and method for providing an image," European patent application EP2 985 992A1, Aug. 13, 2014. S. Grosche et al., "Image Super-Resolution Using T-Tetromino Pixels," submitted to TIP in 2021, preprint arXiv:2111.09013.

- QS and TQS sensors have reduced light efficiency compared to LR sensor
- How to increase light efficiency to 100% while maintaining non-regularity?

G. D. Galdo et al., "Apparatus and method for providing an image," European patent application EP2 985 992A1, Aug. 13, 2014. S. Grosche et al., "Image Super-Resolution Using T-Tetromino Pixels," submitted to TIP in 2021, preprint arXiv:2111.09013.

S. Grosche: Applications of Non-Regular Image Sampling using LFCR

SVCP, 4th July 2022 Page 10

Tetromino Sampling – Results

S. Grosche et al., "Image Super-Resolution Using T-Tetromino Pixels," submitted to TIP in 2021, preprint arXiv:2111.09013.

S. Grosche: Applications of Non-Regular Image Sampling using LFCR

Tetromino Sampling - Visual Results

S. Grosche: Applications of Non-Regular Image Sampling using LFCR Chair of Multimedia Communications and Signal Processing

- Non-regular sampling is used to increase the image quality per measurement
- LFCR+VDSR achieves best reconstruction results and can be used for different sensor scenarios
- T-tetromino sampling: Increased reconstruction quality and 100% fill factor

- Non-regular sampling is used to increase the image quality per measurement
- LFCR+VDSR achieves best reconstruction results and can be used for different sensor scenarios
- T-tetromino sampling: Increased reconstruction quality and 100% fill factor

Possible future work

- Different network layouts? For non-repeating sensor layouts?
- How about color measurements?
- More optimal sensor layout?

Friedrich-Alexander-Universität Technische Fakultät

