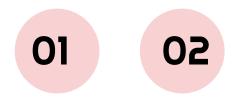


Ultra-low bitrate Video Conferencing Using Deep Animation models

Goluck KONUKO PhD Student: Laboratoire des Signaux et Systèmes - CNRS - Centrale Supélec - Université Paris Saclay



Context and Motivation

Ultra-low bitrate compression for real-time chat applications.

Coding Frameworks

Deep animation modelling with sparse motion representation

Results

RD and Subjective comparison versus conventional frameworks.

Conclusions

Performance gains, limitations and ongoing work.

Introduction

- My Thesis Deep generative compression for Low Bitrate Video Conferencing
 - Applied deep learning in video compression
 - Target low-latency, low bitrate application
 - Primarily modelling human face and associated coding scene elements

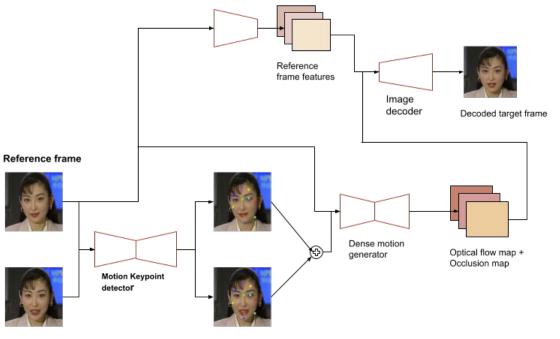
Context and Motivation

Apply deep neural networks as the building blocks of a compression framework.

Use sparsely coded information for video reconstruction.

High reconstruction quality

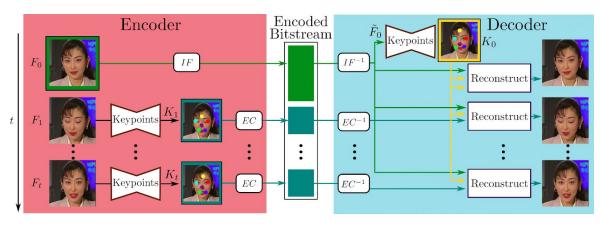
Use generative capabilities of GANs to achieve high perceptual quality.



Framework: DAC Components

- 3 neural networks jointly trained with a linear combination of **feature matching**, equivariance, GAN and perceptual losses.
- Motion keypoint detector
 - Pixel coordinate, R²
 - Local affine transform (R²×²)
- Dense motion generator: Predicts a **dense** optical flow map representing motion between the reference and target frames.

Target frame

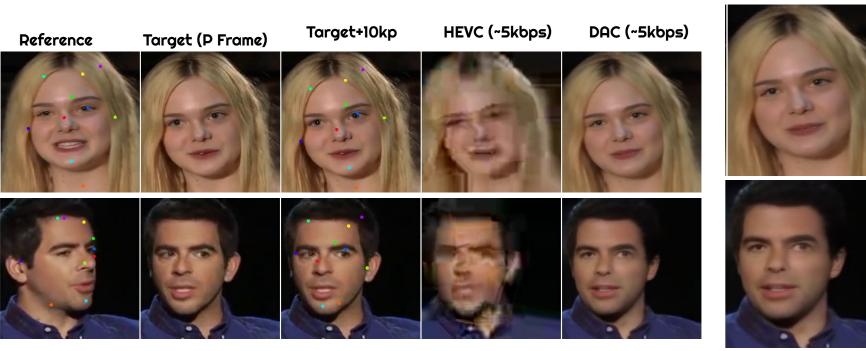


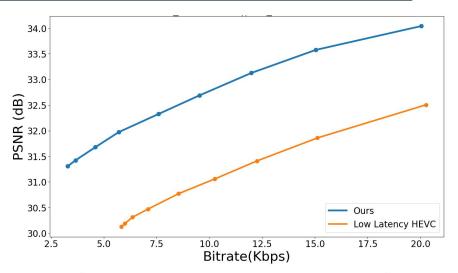
Framework: Deep Animation Coding

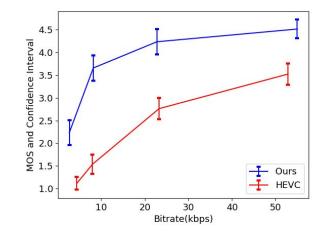
Motion representation with sparse keypoints

Dense optical flow prediction with a deep neural network.

Apply Adversarially trained GAN to reconstruct P frames




Visual Comparison



Results

	VoxCeleb BD quality / BD rate	Xiph.org BD quality / BD rate
PSNR	1.66 / -62.18	2.23 / -76.86
SSIM	0.06/-56.34	0.1/-67.43
MS-SSIM	0.04 / -52.33	0.06 / -51.73
VIF	0.02 / -41.46	0.05 / -49.99

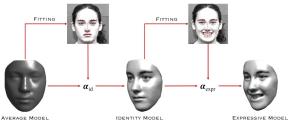
Table 1:	User	preference score vs HEVC	

Bitrate (kbps)	No. of votes (Ours/HEVC)	PREFERENCE (%)	
5	268 / 0	100.00	
10	229/31	88.08	
15	218/40	84.50	
20	193 / 59	76.59	
25	160/92	63.49	
30	164/98	62.60	

Quality Scalability

Some Issues

The animation model converges to a single RD point

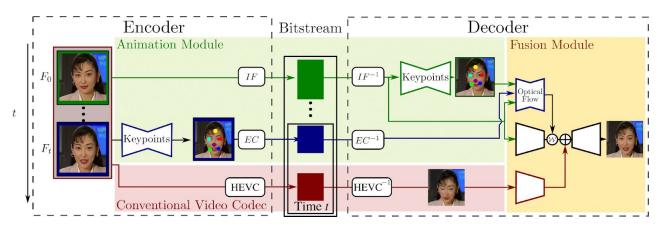

Keypoint Quantization

Quantization of keypoints degrades optical flow prediction at test time.

Supervised vs Unsupervised Keypoints

3DMMs + Supervised KPs

Unsupervised KPs

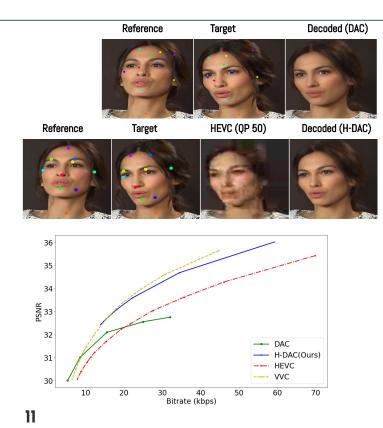


Framework: Hybrid Coding

Two-stream hybrid coding for quality scalability.

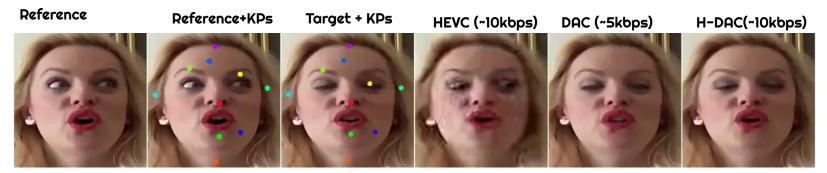
Applying quantization-aware motion keypoints.

A novel fusion module with multi-scale adaptive instance normalization.



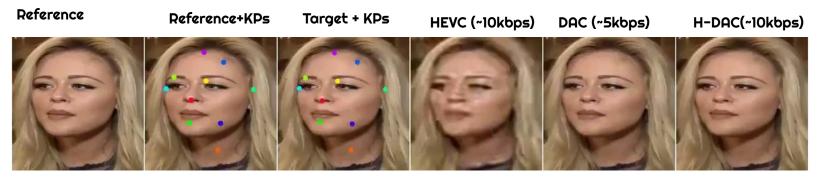
Results

DAC(~5kbps)


	VoxCeleb	Xiph.org	
	BD quality / BD rate	BD quality / BD rate	
PSNR ↑	1.07 / -33.36	0.97 / -30.7	
SSIM ↑	0.02/-33.41	0.02 / -28.33	
msVGG \downarrow	-19.16 / -48.84	-20.04 / -41.64	

Visual Comparison

https://drive.google.com/file/d/1kpQ8yn1GVRGp0vNMyLC6mc-mmOssCgPw/view?usp=sharing


https://drive.google.com/file/d/1kpQ8yn1GVRGp0vNMyLC6mc-mmOssCgPw/view?usp=sharing

Visual Comparison

https://drive.google.com/file/d/1aBXLJrJBstSiC_BvaQIQ3nPOI1huIOZ5/view?usp=sharing

https://drive.google.com/file/d/1Sl2jUPnerCyavqJZn8zuBegePaXFb7hp/view?usp=sharing

Conclusions

Summary

• We propose the first video conferencing codec that employs a deep generative frame animation scheme with ultra-low bitrate performance.

Ongoing Work

 Ongoing work focuses on quality and resolution scalability as well as model pruning for test on mobile devices.

References

- G. Konuko, G. Valenzise, and S. Lathuili`ere, "Ultra-low bitrate video conferencing using deep image animation," in IEEE ICASSP, 2020
- Konuko et al. "A hybrid deep animation codec for low-bitrate video conferencing", preprint. ICIP 2022
- A. Siarohin, S. Lathuili`ere, S. Tulyakov, E. Ricci, and N. Sebe, "First order motion model for image animation," in Neurips, 2019.

