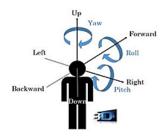
Hybrid Method for Patch-Depth Transmission in MPEG Immersive Video

Marta Milovanović

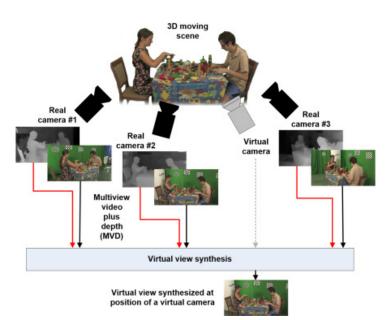
Supervisors: Félix Henry, Marco Cagnazzo

Orange Labs LTCI, Télécom Paris, Institut Polytechnique de Paris

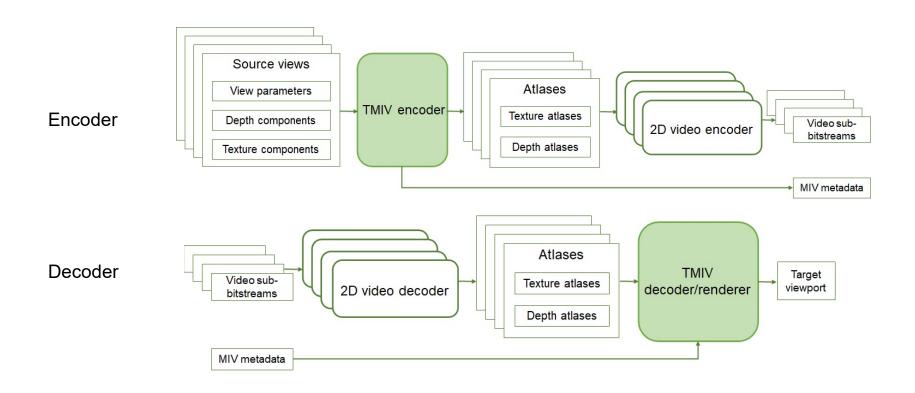

4th July 2022 Ilmenau, Germany

MPEG Immersive Video (MIV)

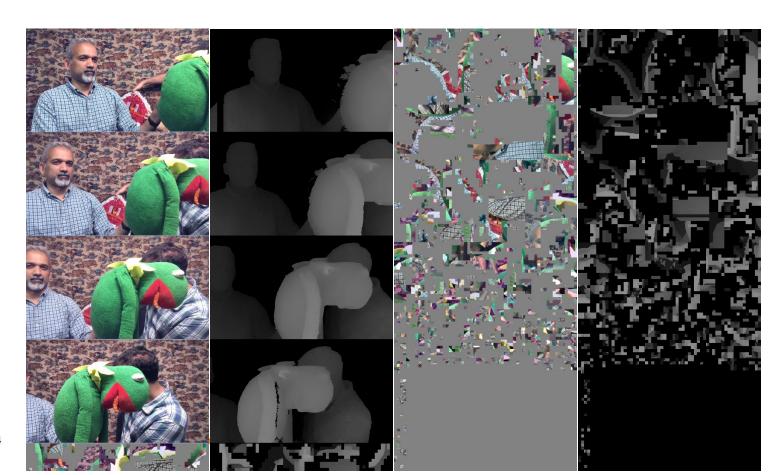
Multiview (plus Depth) representation

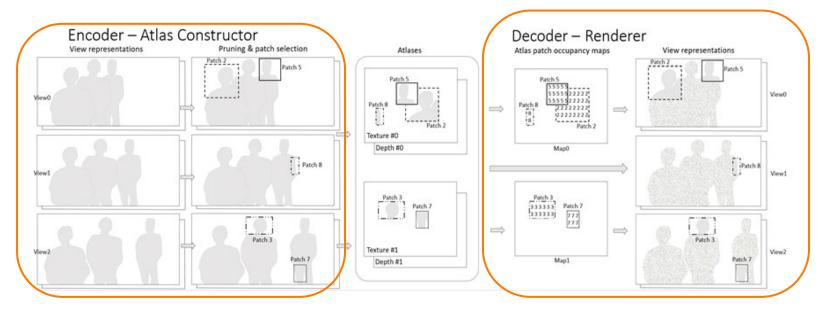


Constraints:

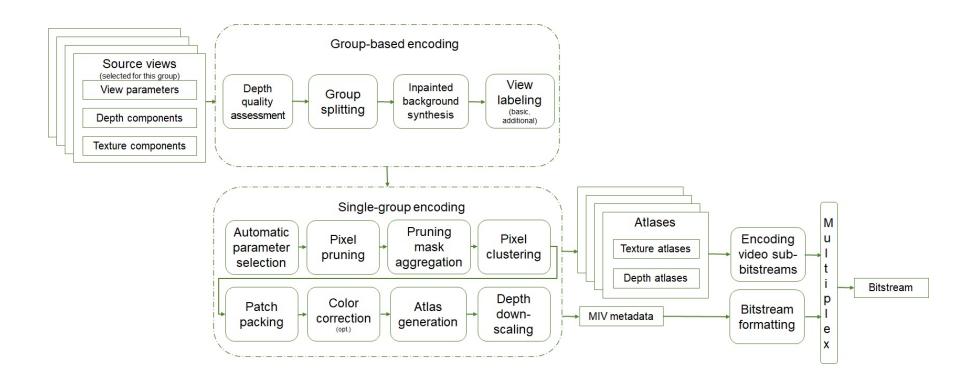

- Bitrate
- Pixel rate
- Number of simultaneous 2D decoders

MIV solution:

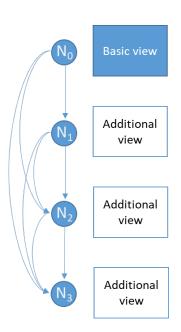

- Send a few full views + the parts of other views that are essential for a good rendering (patches)
- Re-use existing 2D video codecs
- Important non normative stages:
 - Depth estimation
 - View synthesis


Test Model for Immersive Video (TMIV)

TMIV Atlases


TMIV Key Components

Representing source views using patch atlases


Pruned view reconstruction

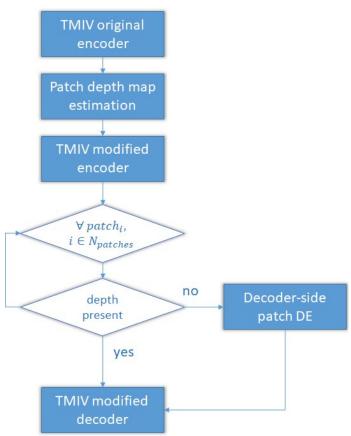
TMIV Encoder (Detailed)

TMIV Pruning

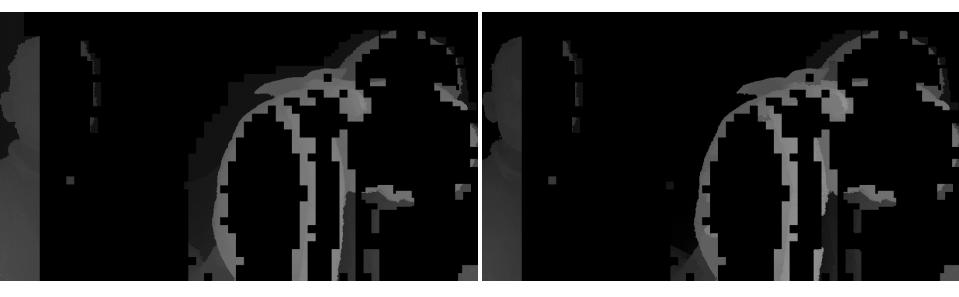
- Remove the inter-view redundancy
- Three criteria to determine if a pixel may be pruned:
 - The pixel should be synthesized from the views higher up in the hierarchy
 - The difference between synthesized and source geometry/luma should be less than a threshold
- Second-pass pruning: global color component differences
- <u>Temporal consistency</u>: the pruning masks are aggregated frame-by-frame (intraperiod reset)

Previous Work / Motivation

- Decoder-Side Depth Estimation for Immersive Video Coding [1]
 - Completely omit the transmission of depth maps (MV-HEVC+synthesis, full views)
- Decoder-Side Depth Estimation in MIV (Geometry Absent profile) [2]
 - Comparison of MIV profiles, Geometry Assistance SEI, Depth estimation benchmark (TMIV, full views)
- Patch Decoder-Side Depth Estimation in MIV [3]
 - Reduce the transmission of patch depth data (TMIV, partial views)


[1] P. Garus, J. Jung, T. Maugey, and C. Guillemot, "Bypassing Depth Maps Transmission For Immersive Video Coding," in 2019 Picture Coding Symposium (PCS), Ningbo, China, Nov. 2019, pp. 1–5, IEEE.

[2] D. Mieloch, P. Garus, **M. Milovanović**, J. Jung, J. Y. Jeong, S. L. Ravi, B. Salahieh, "Overview and Efficiency of Decoder-Side Depth Estimation in MPEG Immersive Video," in *IEEE Transactions on Circuits and Systems for Video Technology* (early access).


[3] **M. Milovanović**, F. Henry, M. Cagnazzo and J. Jung, "Patch Decoder-Side Depth Estimation In Mpeg Immersive Video," in *ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2021, pp. 1945-1949, IEEE.

Hybrid Method for Patch-Depth Transmission in MIV

- Adapt the pruning strategy to ensure a reliable patch depth estimation at the decoder side
- Patch level decisions and patch depth selection based on the estimation quality
- "Anchor 1": send everything
- "Anchor 2": do not send the patch-depths at all
- Our "hybrid" proposal

Preliminary Synthesis Results

Pruned view depth map - anchor

Pruned view depth map - proposal

Preliminary Synthesis Results

Sequence	High BD-Rate Y-PSNR [%]	Low BD-Rate Y-PSNR [%]	High BD-Rate VMAF [%]	Low BD-Rate VMAF [%]
Frog	0.1	-1.4	-1.6	-2.3
Painter	-0.0	-0.0	-0.0	-0.0
Fencing	-2.8	-1.7	-1.3	-1.1
Street	-0.0	-0.4	-0.9	-0.9
Mirror	0.8	0.5	0.5	0.2

- ➤ We also observe small gains in terms of pixel rate saving (~0.2% 1.0%)
- > The amount of transmitted patch-depths vary per sequence
- Our method performs better on low bitrate range (same as for DSDE in general)

Conclusion

> Summary:

 Smart selection of depth patches for transmission brings bitrate and pixel-rate savings while preserving the synthesized view quality

Possible improvements:

- Testing other selection criteria and finding the best one
- Using a more convenient depth estimator
- Enhancing the patch-depth atlas packing
- New possibilities, e.g. sending more textures

Thank you for your attention!

