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- Inherently separating shape and
texture

- BSP tree renderer is differentiable

- End-to-end training
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Differentiable BSP Tree Rendering - Overview ey

Compute region map 7’ that assigns a one-hot vector r]’) to
each pixel p defining the region p belongs to

r, = (1,0,0,0), e.g., means p belongs to the region
associated with the first leaf node
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Differentiable BSP Tree Rendering - Overview

Compute region map 7’ that assigns a one-hot vector r]’) to
each pixel p defining the region p belongs to

r, = (1,0,0,0), e.g., means p belongs to the region
associated with the first leaf node

Then use the region map " and the predicted class logits v; for each leaf node i to
determine each pixel p's class logits
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Differentiable BSP Tree Rendering - Region Map

Signed distance function: f(p) =n-p —d
n and d are predicted, one fixed sample point p per pixel
| f(p)| is the distance to the predicted line
sign(f(p)) indicates on which side of the line p lies
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Differentiable BSP Tree Rendering - Region Map

Signed distance function: f(p) =n-p —d
n and d are predicted, one fixed sample point p per pixel

| f(p) | is the distance to the predicted line

sign(f(p)) indicates on which side of the line p lies

Initial region map: for each pixel store a vector r, of Is, e.qg., r, = (1,1,1,1)
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Differentiable BSP Tree Rendering - Region Map

Signed distance function: f(p) =n-p —d
n and d are predicted, one fixed sample point p per pixel

| f(p) | is the distance to the predicted line

sign(f(p)) indicates on which side of the line p lies
Initial region map: for each pixel store a vector r, of Is, e.qg., r, = (1,1,1,1)

For each inner node:
rolleft] = r,[left] +Ap - oA f(p))
rolright] = r[right] - Ag - (1 — 6(Acf(P)))
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Differentiable BSP Tree Rendering - Region Map

Signed distance function: f(p) =n-p —d
n and d are predicted, one fixed sample point p per pixel

| f(p) | is the distance to the predicted line

sign(f(p)) indicates on which side of the line p lies
Initial region map: for each pixel store a vector r, of Is, e.qg., r, = (1,1,1,1)

For each inner node:
rolleft] = r,[left] +Ap - oA f(p))
rolright] = r[right] - Ag - (1 — 6(Acf(P)))

r, converges to one-hot-like vector, e.g., r,, = (/11?,0,0,0)
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Compute final per-pixel prediction g(p):
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v; < predicted class logits in leaf node 1

r, = softmax(rp)

final prediction: g(p) = Z rli] - v

l
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Datasets

Five datasets used for evaluation:

Vaihingen, Potsdam, Hannover, Nienburg, Buxtehude
16 images per dataset

10 images used for training, the rest as validation and test sets
Size: 2336x1281 to 6000x6000 pixels

224x224 image patches used as model input

Random translation, rotation and shearing used for augmentation to 8000 training
patches

Ground sampling distance: 5 to 20cm
Channels: Near-infrared, red, green, (blue), depth
Classes: Impervious Surface, Building, Tree, Low Vegetation, Car, Clutter
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Autoencoder

Use BSPSegNet as ground truth autoencoder
Encoder: MobileNetv2
Two BSP tree depths: 2 and 3

Each BSP tree encodes a 8x8 pixel block

99.7% to 99.8% accuracy
97.4% to 99.4% mloU

Almost all configurations have a standard deviation of less than 0.7%
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Semantic Segmentation

Potsdam
Accuracy [%)] mloU [%]
%7 X BSPSegNet2 X DeeplLabv3+ X U-Net 69 -
X BSPSegNet3 X FCN
85 68
67
84
X X X X X 66 - X
X x X 65 - 1
83 - X X x X
64
82
63
81 A 62
MobileNetv2 Xception MobileNetv2 Xception
|
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Semantic Segmentation TNt

Input Ground Truth  BSPSegNet3  Deeplabv3+

. building . tree

. impervious surface . low vegetation car
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Semantic Segmentation TNt

Input Ground Truth  BSPSegNet3  Deeplabv3+ U-Net
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. impervious surface . low vegetation car
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Conclusion tntBEE

Semantic segmentation can be successfully performed by predicting binary space
partitioning trees:

Our model inherently disentangles shape and texture features

It is end-to-end trainable by using differentiable BSP tree rendering

It can be used to map an existing segmentation to a BSP tree representation
It delivers state-of-the-art performance

Future Research:
Use our model for domain adaptation

Expand our model to instance and panoptic segmentation
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Data Augmentation tnt

16 images
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0-B ¢

16 images 10 training images 6 validation & test images
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Data Augmentation tnt EE

0-0 ©

16 images 10 training images 6 validation & test images

8000 training patches
patch size = 224x224
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Data Augmentation tnt EE

16 images 10 training images 6 validation & test images
8000 training patches n validation & test patches

patch size = 224x224
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