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END-TO-END IMAGE LEARNED CODECS

End-to-end image learned codecs
based on auto-encoder architecture

Encoder : Transform the input image x
to a latent representation y

Probability model : Estimation the
probability distribution of the latent
representation

Decoder : Recontruct the input image
from the latent representation
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END-TO-END IMAGE LEARNED CODECS

Fixed
Probability model

[1] J. Balle, D. Minnen, S. Singh, and N.Johnston S.J Hwan,
“Variational image compression with a scale hyper-prior,” ICLR 2018 - Conference Track Proceedings, 2018.
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END-TO-END IMAGE LEARNED CODECS :
LIMITATIONS

Architecture allows
multi-resolution iImage
coding.

Hardware limitation
F. (memory saturation) for
big resolutions

e B AD Ex : OOM error for
N coding HD Image on

GPU 2080t with 11Go
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PATCH-BASED END-TO-END IMAGE LEARNED
CODECS USING OVERLAPPING

Goal

> Benefit from the advantages of patch-based solutions to address the hardware
limitation
> Eliminate Border artifacts from the decoded images

Contribution
> Patch-based end-to-end learned image codec using overlapping method

> The proposed method is compatible with any learned codec based on an auto-
encoder architecture
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PATCH-BASED END-TO-END IMAGE LEARNED
CODECS USING OVERLAPPING
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PATCH-BASED END-TO-END

IMAGE LEARNED

CODECS USING OVERLAPPING

Divide Input into Model Gather Patches
Patches

Compute Bitrate

l

Compute Metrics

PSNR Ms-ssim

[2] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned

image compression with discretized gaussian mixture

likelihoods and attention modules,” Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 7936-7945, 2020.

> End-to-end model is an implementation of
cheng 2020 [2].

> Training process :
> Dataset : Clic 2020
> Trainingresolution : 256x256
> Totalnumber of steps 500 000

> Loss function :
J =D+ AR

D : distorsion measured By MSE or MS-SSIM

R : rate used to transmit the bitstream,
estimated using the shannon entropy

A Lagrangian multipliers
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END-TO-END MODEL ARCHITECTURE

Hyper-encoder ha
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[2] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned

image compression with discretized gaussian mixture

likelihoods and attention modules,” Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 7936-7945, 2020.
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END-TO-END MODEL ARCHITECTURE
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PATCH-BASED END-TO-END IMAGE LEARNED
CODECS USING OVERLAPPING

e —— . Rec
St e Model : Gather Patches
Fatches . .
BPP Jv

Compute Bitrate Compute Metrics

l
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EVALUATION PROCESS

> Models : Eight models were trained. 4 for each quality metric (MSE and MS-SSIM) .
> Metric MSE : A = {4096,3140,2048,1024}
> Metric MS-SSIM : A = {420, 220, 120, 64}
> Evaluation Sequences : Frame extracted from JVET Common Test Condition (CTC).
> Frame is compressed in :
2 Full resolution

> Per patch without overlapping

> Per patch with overlapping N € {2, 4, 8, 16, 32}
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R E S U I_ T S (a) original (b) full Image
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RESULTS

BD-rate (MS-SSIM) gains of patch-based BD-rate (PSNR) gains of patch-based coding
coding schemes compared to full resolution schemes compared to full resolution coding
coding system for CTC sequences. system for CTC sequences.

Patch w/o Patch with Overlapping

Patch w/o Patch with Overlapping

Overlapping

0.649 0.029 -0.009 0.046 0066 | -0.066

Overlapping

Class -0,006 -0.061 -0.067 -0.072 -0.080 -0.074
B

: .

Class 0.536 0030 | 0.0002 0029 | -0044 | -0.041
C

0.231 0.022 0.008 0.009 0016 | -0013
D

0.958 0.057 m .0.021 0.045 | -0047
E

0.685 0.045 0.010 .0.018 0.033 | -0032
F

Class 0,0065 -0.030 | -0.035 -0.038 0040 | -0035
C
Class 0,0042 0010 | -0.011 -0.014 0014 | -0.007
D
Class 0.035 -0.002 -0.027 0050 | -0.036
E
Class 0.030 0022 | -0025 -0.027 0030 | -0023
F

=8
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CONCLUSION

> Hardware problem addressed.

> Block artifacts removed.

> Slight gains are observed comparing to Full resolution coding

> Other applications of this method such as denoising.
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RESULTS

Resolution

Method

Coding Time
GPU 2080
11Go

Coding time GPU
3090
24Go

Total Number
of patches

Batch size

HD

Full Resolution

OOM

OOM

Patch in parallel w/o overlaping

3.40s

1.967s

Patch in parallel with overlaping

3.82s

2.05s

Patch sequentially with overlaping

6.15s

2.861s

1280x720

Full Resolution

OOM

0.93s

Patch in parallel w/o overlaping

1.75s

0.95s

Patch in parallel with overlaping

1.91s

1.012s

Patch sequentially with overlaping

2.73s

1.25s

832x480

Full Resolution

1.06s

Patch in parallel w/o overlaping

1.05s

Patch in parallel with overlaping

1.109s

Patch sequentially with overlaping
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