

Domain Adaptation for Unknown Image Distortions

Maximiliane Gruber, Fabian Brand, Alina Mosebach, Jürgen Seiler, and André Kaup maximiliane.gruber@fau.de Chair of Multimedia Communications Friedrich-Alexander-Universität and Signal Processing

Technische Fakultät

Training of Instance Segmentation

Source: cityscapes-dataset.co

Friedrich-Alexander-Universität Technische Fakultät

Application of Instance Segmentation

Outline

- Motivation
- Domain Adaptation
- State-of-the Art
- Unpaired Learning of Unknown Image Distortions
- Evaluation
- Conclusion

Problem:

- Instance segmentation not directly applicable to new domains
- Annotated data required for each domain
- Data annotation expensive
- \rightarrow Domain Adaptation [1]:
 - Collect data from new domain
 - Adapt annotated data sets to new domain

 $\begin{array}{c} & & & \\ & - & - & p_{\text{train}}(x) \\ & - & - & p_{\text{test, a}}(x) \\ & \cdots & p_{\text{test, b}}(x) \end{array} \end{array}$

G. Csurka, "A Comprehensive Survey on Domain Adaptation for Visual Applications." Springer, 2017, ch. 1, pp. 135.

Adversarial Learning for Domain Adaptation

P. Isola, et al., "Image-to-Image Translation with Conditional Adversarial Networks," in Proc. Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
J. Zhu, et al., "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks," in Proc. International Conference on Computer Vision (ICCV), 2017.

M. Gruber: Domain Adaptation for Unknown Image Distortions

Paired learning of image distortions [4]

- White noise, pink noise, JPEG2000, JPEG
- Based on pix2pix framework [2]
- Evaluation in terms of image quality
- No application to machine vision tasks

[4] L.-H. Chen, et al., "Learning to Distort Images Using Generative Adversarial Networks," IEEE Signal Processing Letters, vol. 27, pp. 2144–2148, 2020.

Unpaired Learning of Unknown Distortions

CycleGAN [2]:

- Generators G, F
- Discriminators D_X , D_Y
- GAN loss: least-squares
- Cycle-consistency loss

M. Gruber: Domain Adaptation for Unknown Image Distortions

Unpaired Learning of Unknown Distortions

Instance Segmentation with Mask R-CNN

Task:

- Localization of all objects
- Distinguishing between instances
- Pixel-wise segmentation of all instances

Evaluation:

- Average Precision (AP) per class
 - Averaged across range of overlap thresholds
- Mean Average Precision (mAP)
 - Averaged over all classes

Evaluation Setup

M. Gruber: Domain Adaptation for Unknown Image Distortions

Results: Instance Segmentation

M. Gruber: Domain Adaptation for Unknown Image Distortions

Distortion	Oracle	Our approach	Difference
Blur	0.15	0.14	-0.01
White noise	0.20	0.19	-0.01
JPEG2000	0.10	0.06	-0.04
JPEG	0.10	0.05	-0.05
HEIF	0.07	0.04	-0.03

M. Gruber: Domain Adaptation for Unknown Image Distortions

Conclusion

Goal: Overcome domain shift for unknown distortions

Friedrich-Alexander-Universität Technische Fakultät Chair of Multimedia Communications and Signal Processing

Page 14