Application of Sensory Evaluation Methods in Film

How Do Expert and Non-Expert Evaluations Differ?

<u>Dominik Keller</u> ¹, Tamara Seybold ², Janto Skowronek ¹, Rakesh Rao Ramachandra Rao ¹, Alexander Raake ¹

- ¹ Audiovisual Technology Group, Technische Universität Ilmenau, Germany
- ² Image Science, Arnold & Richter Cine Technik (ARRI), Germany

Contact: dominik.keller@tu-ilmenau.de

Motivation

sharp

red-tinged

How good?

dark

real

sterile

grainy

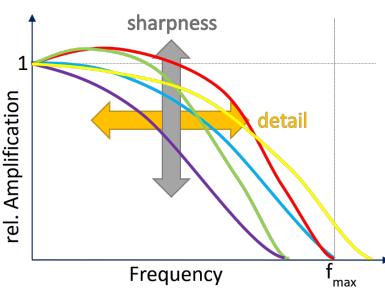
Motivation

Which one is better?

How different are they?

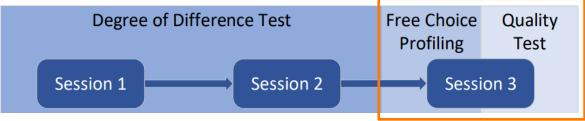
Motivation

- Established methods assessing error-related quality
 - Little explanation of what properties are perceptible and decisive
- Sensory evaluation methods
 - Origin: assessment of properties and quality of food [LawlessHeymann2013]
 - reveal perceptual dimensions to find optimal technical settings
 - are done with expert assessors
 - Discrimination, description and acceptance
 - Relevant insights in speech / audio [WierstorfEtAl2013; BechZacharov2006; WältermannEtAl2010]



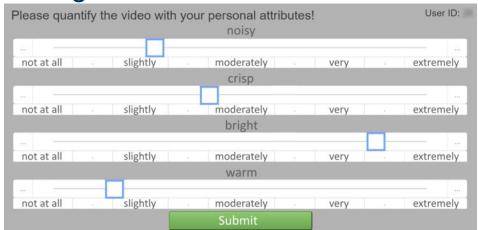
Texture

- Look, visual / technical parameters
- Sharpness and Detail: transmission behaviour of spatial frequencies
- Noise
 - artificial ARRI ALEXA noise and grain
 - varying size, gain, saturation
- Very subtle differences between stimuli


Sharpness and Detail

Testing Procedure

- Mixed-method approach [StrohmeierEtAl2010; BechEtAl1996; KaplanisEtAl2017]
- 25 expert subjects per test; in total 41 experts (incl. overlap)
- 18* UHD1 stimuli of ≈19s; static scenery
- Test setup acc. to ITU-T Rec. P.910



Expert test

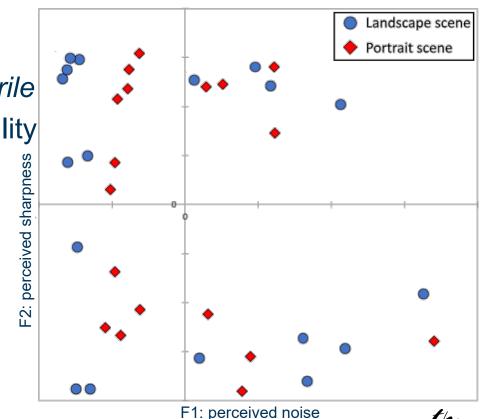
Free Choice Profiling (FCP) and Generalized Procrustes Analysis (GPA)

- FCP related to [Lorho2005]
 - Individual elicitation of ≤7 attributes [Miller1956]
 - Rating on scales

Expert test

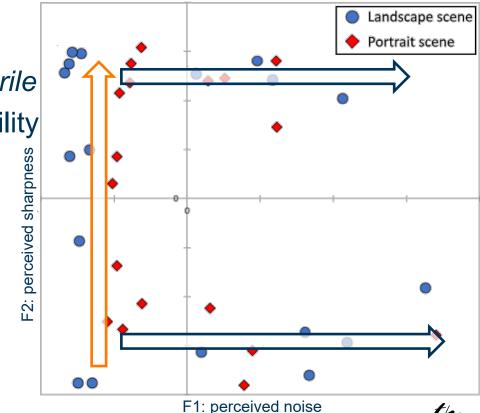
Free Choice Profiling (FCP) and Generalized Procrustes Analysis (GPA)

- FCP related to [Lorho2005]
 - Individual elicitation of ≤7 attributes [Miller1956]
 - Rating on scales
- **GPA** [Gower1975]
 - Fits individual data to consensus through transformations
 - Attribute values as Euclidian distances



Free Choice Profiling and GPA

Expert test


- Exemplary elicitated attributes: noisy, active, sharp, detailed, sterile
- Depictions cover >90% of variability
- Varimax-rotated

Expert test

Free Choice Profiling and GPA

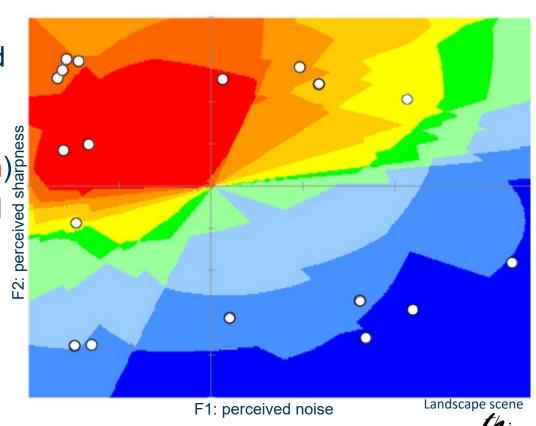
- Exemplary elicitated attributes: noisy, active, sharp, detailed, sterile
- Depictions cover >90% of variability
- Varimax-rotated
- F1: perceived noise
 - F2: perceived sharpness
 - increasing noise level
 - increasing sharpness level

Experts: Quality Test, Preference Mapping

- Quality test
 - Rating on extended continuous scale [BoddenJekosch1996]

- External Preference Mapping (PM) [GreenhoffMacFie1994]
 - Visualizing quality in form of stimulus maps
 - External PM using colors / contours

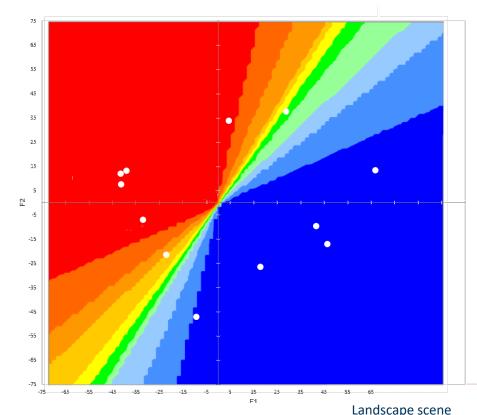
TECHNISCHE UNIVERSITÄT


ILMENAU

Combination: External PM

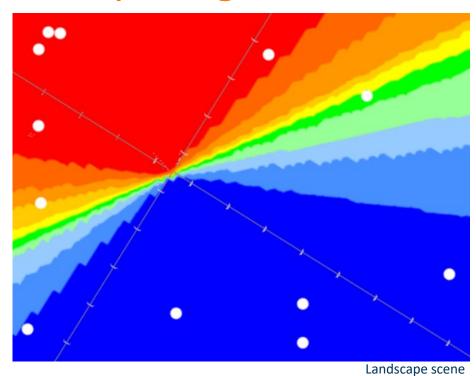
- FCP: Coordinate system and placement of stimuli
- Quality test: colored satisfaction level (low to high)

 Analytic dimensions mapped with hedonic judgements


 Optimum configuration of Quality test: colored
- Analytic dimensions mapped
- Optimum configuration of technical parameters

Non-Experts: Quality Test & PM

- Quality test
 - Paired preference ratings: what part did you prefer?
 - Smaller subset of videos
 - Transferred to ACR ratings via Bradley-Terry model

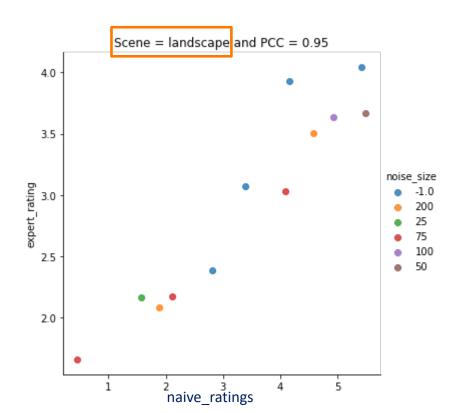


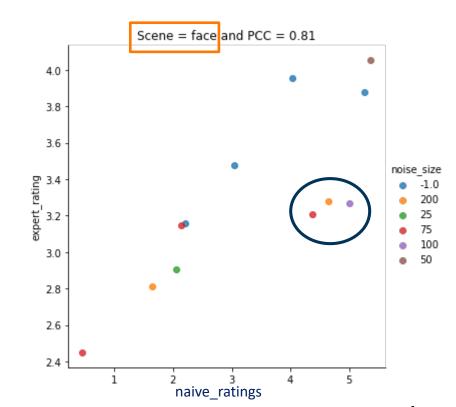
Comparing naïve and expert ratings

00

Expert test

Naive test


Less stimuli due to pairwise comparison


Audiovisual Technology

Landscape scene

Detailed Comparison Between Scenes

Conclusion and Outlook

- Sensory evaluation methods work well with high quality film material
- Sharpness and noise mostly separable perceptive dimensions
- Expert ratings more detailed and more balanced between dimensions
- Extension
 - Contents
 - Technical effects: optics, color, products
 - Holistic attempt: coding, display

Thank you very much for your attention!

Contact details

dominik.keller@tu-ilmenau.de

Sources

[BechEtAl1996] [BechZacharov2006]

[BoddenJekosch1996]

[GreenhoffMacFie1994]

[Carroll1972]

[Gower1975]

[Lorho2005]

[Miller1956]

[WierstorfEtAl2013]

[WältermannEtAl2010]

[StrohmeierEtAl2010]

S Bech et al.: Rapid perceptual image description (RaPID) method

S Bech, N Zacharov: Perceptual audio evaluation: theory, method and application M Bodden, U Jekosch: Entwicklung und Durchführung von Tests mit Versuchspersonen zur

Verifizierung von Modellen zur Berechnung der Sprachübertragungsqualität J Carroll: Individual differences and multidimensional scaling

J Gower: Generalized procrustes analysis

K Greenhoff, H MacFie: Preference mapping in practice

[LawlessHeymann2013] H Lawless, H Heymann: Sensory evaluation of food: principles and practices G Lorho: Individual vocabulary profiling of spatial enhancement systems for stereo

headphone reproduction G Miller: The magical number seven, plus or minus two: Some limits on our capacity for

processing information

H Wierstorf, A Raake, M Geier, S Spors: Perception of focused sources in wave field synthesis M Wältermann, A Raake, S Möller: Quality dimensions of narrowband and wideband

speech transmission D Strohmeier, S Jumisko-Pyykkö, K Kunze: Open profiling of quality: A mixed method approach to understanding multimodal quality perception

[ZangoEtAl2011]

[KaplanisEtAL2017] N Kaplanis et al.: Perception of reverberation in small rooms: a literature study

Y Zango et al.: Identification of perceptive dimensions of speech and audio codecs subjective quality

TECHNISCHE UNIVERSITÄT

ILMENAU

18