Deep-based Film Grain Removal and Synthesis

Zoubida Ameur^{1,2}, Edouard Francois¹, Wassim Hamidouche², Daniel Menard ² and Claire-Hélène Demarty ¹

¹ InterDigital R&D, France — ² INSA Rennes, France

Summer school on Video Compression and Processing, SVCP 2022 July 5, 2022

1> interdigital

Film grain is originally a characteristic of analog film.

Introduction

Film grain results from the process of exposing and developing silver halide crystals.

The resulting photograph is then made up of a set of tiny grains.

Yet, most professional photographers and filmmakers would **rather stick** with the **analog aspect** when it comes to creating artistic and creative content.

Film grain is difficult to **compress** and **preserve** at the same time.

- **1** Temporally independent but spatially correlated.
- 2 Randomly distributed, thus, transformed coefficients in the high frequency band.
- **3** A negative impact on the accuracy of predictions and motion estimation.

High bitrates are then necessary to reconstitute film grain with a sufficiently good fidelity.

Introduction

Figure: A simplified framework of the video distribution system with film grain removal, modeling, and synthesis steps.

Analysis:

- 1 Film grain filtering and edge detection
- 2 Film gain analysis

Synthesis:

- 1 Film grain pattern generation
- 2 Film gain scaling

1> interdigital

 $^{^1}$ Norkin, et al., Film grain synthesis for AV1 video codec, DCC 2018

 $^{^2}$ Radosavljevicet et al., Implementation of film-grain technology within VVC, SPIE 2021

- In the literature, it is proposed to use the H.264/MPEG-4 AVC video encoder for film grain removal.
- 2D spatial filters applied only on edge-free regions ³.
- Temporal filters based on multi-hypothesis motion compensated filter (MHMCF) ⁴.

³Oh, et al., Film grain noise modeling in advanced video coding, SPIE 2007.

⁴Guo, et al., A multihypothesis motion-compensated temporal filter for video denoising, ICIP 2006

- A large collection of pristine images.
- A publicly available code of a film grain rendering algorithm is used.⁵
- Film grain added at five different intensities by varying the average grain radius μ_r in $\{0.010, 0.025, 0.050, 0.075, 0.100\}$.
- From each image, the maximum number of non-overlapping patches of size 256×256 is extracted.

Train				Test					
BSD	KADIS-700k	DIV2K	Waterloo	Flickr2k	Total	CBSD68	Kodak24	McMaster	Set12
400	14000	900	4744	2650	148694	68	24	18	12

⁵ Newson et al., A Stochastic Film Grain Model for Resolution-Independent Rendering, CGF 2017

• A large dataset counting 148694 pristine images to which film grain is added at 5 different levels.

(a) FG level=0.010

(b) FG level=0.025

(c) FG level=0.050

(d) FG level=0.075

(e) FG level=0.100

1> interdigital

- Image-to-image translation
- Conditional generative adversarial networks

Figure: Examples of image-to-image translation tasks.

Film grain synthesis can be viewed as the translation of a given grain-free input image x into a corresponding grainy output image y while preserving the content.

$$\hat{\boldsymbol{y}} = G_{\Phi}(\boldsymbol{x}, \boldsymbol{v}),$$
 (1)

The film grain level map v is a channel of the same dimensions as the input image, where all pixel values are equal to the film grain level of the corresponding target grainy image.

Figure: Framework of our proposed solution for film grain synthesis.

1> interdigital.

Qualitative evaluation — Film grain synthesis

(a) FG level=0.010

(b) FG level=0.025

(c) FG level=0.050

(d) FG level=0.075

(e) FG level=0.100

Figure: Color film grain synthesis results.

Qualitative evaluation — Film grain synthesis

(a) FG level=0.010 (b) FG level=0.025 (c) FG level=0.050

(d) FG level=0.075 (e) FG level=0.100Figure: Grayscale film grain synthesis results.

1> interdigital.

Adopted metric: Jensen Shannon divergence - natural scene statistics (JSD-NSS) metric⁶

- Based on natural scene statistics (NSS) models
- Computation of mean-subtracted contrast-normalized (MSCN) coefficients on local spatial neighborhoods of a geniune grainy image and a translated one
- Comparison and analysis of their distributions
- For natural images, such distributions behave normally, while distortions perturb this regularity ⁷.

⁶ Chen et al., Learning to distort images using generative adversarial networks, ISPL 2020.

⁷ Galdran et al., Retinal image quality assessment by mean-subtracted contrast-normalized coefficients, ECCOMAS 2017.

1> interdigital.

Table: Film grain synthesis results: mean JSD-NSS results between ground-truth and translated grainy images from CBSD68, Kodak24 and McMaster datasets.

Dataset	0.010	0.025	0.050	0.075	0.100
CBSD68	0.0007	0.0007	0.0008	0.0009	0.0011
Kodak24	0.0003	0.0003	0.0003	0.0003	0.0004
McMaster	0.0006	0.0007	0.0006	0.0004	0.0004

Table: Mean JSD-NSS comparison between ground-truth and translated grainy images in terms of intensity levels on CBSD68, Kodak24 and McMaster datasets.

Dataset	Generated FG level	Ground-truth FG level			
2		0.010	0.050	0.100	
	0.010	0.0007	0.0008	0.0014	
CBSD68	0.050	0.0009	0.0007	0.0011	
	0.100	0.0017	0.0014	0.0010	
	0.010	0.0003	0.0004	0.009	
Kodak24	0.050	0.0004	0.0003	0.0005	
	0.100	0.0010	0.0006	0.0003	
	0.010	0.0006	0.0007	0.0014	
McMaster	0.050	0.0007	0.0006	0.0010	
	0.100	0.0013	0.0008	0.0004	

- Only the encoder-decoder architecture from the proposed cGAN is adopted to solve film grain filtering task but with different inputs and outputs.
- Two configurations of the same model are proposed, a blind version and a non-blind version.

$$\begin{cases} \hat{\boldsymbol{x}} = H_{\theta_1}(\boldsymbol{y}, \boldsymbol{v}) & \text{non-blind} \\ \hat{\boldsymbol{x}} = H_{\theta_2}(\boldsymbol{y}) & \text{blind} \end{cases}$$
(2)

Figure: Framework of our proposed solution for film grain removal.

1> interdigital

Qualitative evaluation — Film grain removal

Figure: Color film grain removal results of different methods.

1> interdigital.

Qualitative evaluation — Film grain removal

Figure: Grayscale film grain removal results of different methods.

1> interdigital.

Table: Average PSNR (dB) / SSIM results of different film grain removal methods with an intensity level of 0.010 on CBSD68, Kodak24, McMaster and Set12 datasets.

Dataset	CBSD68	Kodak24	McMaster	Set12
CBM3D BM3D	28.87 / 0.858	29.81 / 0.864	31.54 / 0.907	29.27 / 0.854
DnCNN	27.74 / 0.787	28.72 / 0.801	29.76 / 0.844	28.00 / 0.820
IRCNN	27.77 / 0.789	28.77 / 0.803	30.15 / 0.854	28.32 / 0.833
FFDNet	27.80 / 0.792	28.83 / 0.807	30.22 / 0.858	28.01 / 0.822
DRUNet	27.70 / 0.779	28.73 / 0.779	30.25 / 0.855	27.97 / 0.812
FFDNet - FG	32.95 / 0.932	33.87 / 0.928	34.93 / 0.936	
Ours	33.44 / 0.937	34.69 / 0.935	36.04 / 0.948	33.37 / 0.926
Ours (blind)	33.36 / 0.936	34.59 / 0.934	35.90 / 0.948	33.36 / 0.925

Generalization to unseen grain

Figure: Film grain removal results on unseen film grain.

1> interdigital.

Figure: Film grain removal results on unseen film grain, cropped grainy patches (top) and cropped filtered patches (bottom).

1> interdigital.

- Controllable and flexible deep learning-based solutions for to film grain removal and synthesis.
- Energy consumption reduction using pre-and post processing operations.
- Reducing bitrate implicitly reduces energy consumption.
- Future works: Implement our models in an end-to-end video compression chain and conduct subjective tests to evaluate the similarity between genuine and synthesized film grain.

Thank you!

Zoubida Ameur (zoubida.ameur@interdigital.com)