

Point Cloud Upsampling Using Frequency Models

Friedrich-Alexander-Universität Technische Fakultät Viktoria Heimann viktoria.heimann@fau.de Chair of Multimedia Communications and Signal Processing

Virtual and Augmented Reality

- Zoom in 3D objects
- Point Cloud Upsampling is necessary

Friedrich-Alexander-Universität Technische Fakultät V. Heimann: Point Cloud Upsampling

Point Cloud

Friedrich-Alexander-Universität Technische Fakultät V. Heimann: Point Cloud Upsampling

Point Clouds

- Single points
 - Geometry (x,y,z)
 - Attribute (RGB)

→ Geometry Upsampling

→ Color Upsampling

Friedrich-Alexander-Universität Technische Fakultät V. Heimann: Point Cloud Upsampling

04.07.2022 Page 4

Input Point Cloud

Friedrich-Alexander-Universität Technische Fakultät V. Heimann: Point Cloud Upsampling

Block Partitioning

V. Heimann: Point Cloud Upsampling

Input Block

V. Heimann: Point Cloud Upsampling

04.07.2022 Page 7

Geometry

Aim:

Generate model that estimates the surface of the point cloud

$$q = f[o, p] = \sum_{k,l \in \mathcal{K}} c_{k,l} \varphi_{k,l}[o, p]$$

Expansion coefficient

Friedrich-Alexander-Universität Technische Fakultät V. Heimann: Point Cloud Upsampling

Frequency-Selective Geometry Upsampling

V. Heimann: Point Cloud Upsampling

04.07.2022 Page 9

Model Generation

V. Heimann: Point Cloud Upsampling

Chair of Multimedia Communications and Signal Processing

04.07.2022 Page 10

Continuous Model and Input Points

V. Heimann: Point Cloud Upsampling

Delaunay Triangulation

Friedrich-Alexander-Universität Technische Fakultät V. Heimann: Point Cloud Upsampling

Delaunay Triangulation

Friedrich-Alexander-Universität Technische Fakultät V. Heimann: Point Cloud Upsampling

04.07.2022 Page 13

Continuous Model with In- and Output Points

V. Heimann: Point Cloud Upsampling

Frequency-Selective Geometry Upsampling

V. Heimann et al., "Frequency-Selective Geometry Upsampling of Point Clouds," accepted for ICIP 2022.

V. Heimann: Point Cloud Upsampling Chair of Multimedia Communications and Signal Processing 04.07.2022 Page 15

Error Metrics

$$e_{\mathbf{A},\mathbf{B}}^{\text{P2Point}} = \frac{1}{N_A} \sum_{\forall a_j \in \mathbf{A}} \|E(i,j)\|_2^2$$

$$e_{A,B}^{P2Plane} = \frac{1}{N_A} \sum_{\forall a_j \in A} (E(i,j) \cdot N_j)^2$$

Tian et al., "Geometric distortion metrics for point cloud compression," ICIP 2017.

Friedrich-Alexander-Universität Technische Fakultät V. Heimann: Point Cloud Upsampling

Results

Scale factor	Metric	Method	Dragon	Duck	Jaguar	Rabbit	camel	elephant	kitten	star	6	21	45	76	Avg
2	$\begin{array}{c} \textbf{P2Point} \\ \times 10^{-3} \end{array}$	EAR [1]	11.3	9.5	14.4	29.6	13.6	8.7	8.3	7.4	7.5	7.4	7.9	7.6	11.1
		PU [2]	13.4	12.7	12.4	9.0	15.3	17.1	18.0	22.4	13.3	13.6	14.0	13.0	14.5
		FSGU (Ours)	1.9	3.8	1.5	2.9	3.5	3.6	3.6	3.8	3.1	2.5	3.3	2.6	3.0
	P2Plane $\times 10^{-3}$	EAR [1]	5.0	4.3	6.6	9.2	2.8	2.0	1.7	0.7	3.0	3.6	3.5	4.0	3.9
		PU [2]	11.3	8.3	10.1	7.3	7.5	8.6	7.0	7.6	7.1	8.9	9.4	8.6	8.5
		FSGU (Ours)	0.5	0.6	0.4	1.3	0.5	0.5	0.4	0.5	0.5	0.5	0.6	0.4	0.6
4	$\begin{array}{c} \text{P2Point} \\ \times 10^{-3} \end{array}$	EAR [1]	27.8	12.7	16.6	12.1	17.9	20.6	16.4	15.2	18.9	14.6	14.0	14.3	16.8
		PU [2]	11.7	11.4	11.4	8.7	16.6	16.6	16.7	16.6	12.9	12.9	14.0	12.6	13.5
		FSGU (Ours)	1.5	3.5	1.2	2.8	3.4	3.5	3.8	4.0	3.7	3.0	4.1	3.0	3.1
	$\begin{array}{c} \textbf{P2Plane} \\ \times 10^{-3} \end{array}$	EAR [1]	9.0	5.0	6.6	3.7	4.0	5.4	4.5	4.5	6.3	5.4	4.9	5.8	5.4
		PU [2]	6.0	6.3	6.5	4.5	6.4	6.8	7.2	7.3	5.8	6.1	6.4	7.2	6.4
		FSGU (Ours)	0.4	0.4	0.4	1.4	0.4	0.4	0.4	0.5	0.5	0.6	0.5	0.5	0.5

[1] H. Huang et al., "Edge-aware point set resampling," ACM Transactions on Graphics, 2013. [2] L. Yu et al. "PU-Net: Point Cloud Upsampling Network," CVPR 2018. Point Clouds taken from: Nouri et al., "Technical report : Greyc 3D colored mesh database," 2017., [2], and Z.Lian et al., "SHREC'11 track: shape retrieval on non-rigid 3d watertight meshes," 2011. Metric taken from Tian et al., "Geometric distortion metrics for point cloud compression," ICIP 2017.

Friedrich-Alexander-Universität

Technische Fakultät

V. Heimann: Point Cloud Upsampling

Visual Results – Dragon

Chair of Multimedia Communications and Signal Processing

Page 18

Conclusion

Frequency-selective model estimation

- uses
 - Expansion coefficients
 - Basis functions
- works
 - Block-based
 - Iteratively
- is successfully applied to
 - Geometry Upsampling

Friedrich-Alexander-Universität Technische Fakultät V. Heimann: Point Cloud Upsampling

04.07.2022 Page 19

